An innovative machine learning based on feed-forward artificial neural network and equilibrium optimization for predicting solar irradiance

Wu, Z. et al. Effect of dielectric leisure of epoxy resin on dielectric lack of medium-frequency transformer. IEEE Trans. Dielectr. Electr. Insul. 29, 1651–1658 (2022).
Google Scholar 
Lu, S. et al. Adaptive management of time delay teleoperation system with unsure dynamics. Front. Neurorobot. 16, 928863. https://doi.org/10.3389/fnbot.2022.928863 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, S. et al. Multiscale function extraction and fusion of picture and textual content in VQA. Int. J. Comput. Intell. Syst. 16, 54. https://doi.org/10.1007/s44196-023-00233-6 (2023).Article 

Google Scholar 
Lu, S. et al. The multi-modal fusion in visible query answering: a overview of consideration mechanisms. PeerJ Comput. Sci. 9, e1400. https://doi.org/10.7717/peerj-cs.1400 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zheng, H. et al. A multi-scale point-supervised network for counting maize tassels within the wild. Plant Phenomics (2023).Cheng, B. et al. Situation-aware dynamic service coordination in an IoT surroundings. IEEE/ACM Trans. Netw. 25, 2082–2095. https://doi.org/10.1109/TNET.2017.2705239 (2017).Article 

Google Scholar 
Yang, X., Wang, X., Wang, S. & Puig, V. Switching-based adaptive fault-tolerant management for unsure nonlinear programs towards actuator and sensor faults. J. Franklin Inst. 360, 11462–11488 (2023).MathSciInternet 

Google Scholar 
Jiang, J., Zhang, L., Wen, X., Valipour, E. & Nojavan, S. Risk-based efficiency of power-to-gas storage expertise built-in with vitality hub system relating to draw back danger constrained strategy. Int. J. Hydrogen Energy 47, 39429–39442 (2022).CAS 

Google Scholar 
Li, S. & Liu, Z. Scheduling uniform machines with restricted task. Math. Biosci. Eng 19, 9697–9708 (2022).MathSciInternet 
PubMed 

Google Scholar 
Zhang, J. et al. Enhanced effectivity with CDCA co-adsorption for dye-sensitized solar cells based on metallosalophen complexes. Solar Energy 209, 316–324 (2020).ADS 
CAS 

Google Scholar 
Huang, S., Huang, M. & Lyu, Y. Seismic efficiency evaluation of a wind turbine with a monopile basis affected by sea ice based on a easy numerical technique. Eng. Appl. Comput. Fluid Mech. 15, 1113–1133 (2021).
Google Scholar 
Chen, H., Wu, H., Kan, T., Zhang, J. & Li, H. Low-carbon financial dispatch of built-in vitality system containing electrical hydrogen manufacturing based on VMD-GRU short-term wind energy prediction. Int. J. Electrical Power Energy Syst. 154, 109420 (2023).
Google Scholar 
Zhu, D. et al. Feedforward Frequency Deviation Control in PLL for Fast Inertial Response of DFIG-Based Wind Turbines. IEEE Trans. Power Electronics (2023).Gong, J., Li, C. & Wasielewski, M. R. Advances in solar vitality conversion. Chem. Soc. Rev. 48, 1862–1864. https://doi.org/10.1039/C9CS90020A (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhang, W., Zheng, Z. & Liu, H. Droop management technique to realize most energy output of photovoltaic for parallel inverter system. CSEE J. Power Energy Syst. 8, 1636–1645 (2021).
Google Scholar 
Blal, M. et al. A prediction fashions for estimating international solar radiation and analysis meteorological impact on solar radiation potential underneath a number of climate circumstances on the floor of Adrar surroundings. Measurement 152, 107348. https://doi.org/10.1016/j.measurement.2019.107348 (2020).Article 

Google Scholar 
Chakchak, J. & Cetin, N. S. Investigating the influence of climate parameters choice on the prediction of solar radiation underneath totally different genera of cloud cowl: A case-study in a subtropical location. Measurement 176, 109159 (2021).
Google Scholar 
Mishra, M., Dash, P. B., Nayak, J., Naik, B. & Swain, S. Ok. Deep learning and wavelet rework built-in strategy for short-term solar PV energy prediction. Measurement 166, 108250 (2020).
Google Scholar 
Patel, S. Ok. et al. Ultra‐Wideband, Polarization‐Independent, Wide‐Angle Multilayer Swastika‐Shaped Metamaterial Solar Energy Absorber with Absorption Prediction utilizing Machine Learning. Adv. Theory Simul., 2100604 (2022).Zazoum, B. Solar photovoltaic energy prediction utilizing totally different machine learning strategies. Energy Rep. 8, 19–25 (2022).
Google Scholar 
Patel, D., Patel, S., Patel, P. & Shah, M. Solar radiation and solar vitality estimation utilizing ANN and Fuzzy logic idea: A complete and systematic research. Environ. Sci. Pollut. Res., 1–15 (2022).Heng, S. Y. et al. Artificial neural network mannequin with totally different backpropagation algorithms and meteorological knowledge for solar radiation prediction. Sci. Rep. 12, 1–18 (2022).ADS 

Google Scholar 
Ghimire, S., Nguyen-Huy, T., Deo, R. C., Casillas-Perez, D. & Salcedo-Sanz, S. Efficient each day solar radiation prediction with deep learning 4-phase convolutional neural network, twin stage stacked regression and assist vector machine CNN-REGST hybrid mannequin. Sustain. Mater. Technol. 32, e00429 (2022).
Google Scholar 
Guermoui, M., Abdelaziz, R., Gairaa, Ok., Djemoui, L. & Benkaciali, S. New temperature-based predicting mannequin for international solar radiation utilizing assist vector regression. Int. J. Ambient Energy 43, 1397–1407 (2022).
Google Scholar 
Singh, N., Jena, S. & Panigrahi, C. Ok. A novel software of resolution tree classifier in solar irradiance prediction. Mater. Today: Proc. 58, 316–323 (2022).
Google Scholar 
Shorabeh, S. N. et al. A call mannequin based on resolution tree and particle swarm optimization algorithms to determine optimum areas for solar energy crops building in Iran. Renew. Energy 187, 56–67 (2022).
Google Scholar 
Guerra, M. I., de Araújo, F. M., de Carvalho Neto, J. T. & Vieira, R. G. Survey on adaptative neural fuzzy inference system (ANFIS) structure utilized to photovoltaic programs. Energy Syst., 1–37 (2022).Fraihat, H. et al. Solar radiation forecasting by pearson correlation utilizing LSTM neural network and ANFIS technique: software within the west-central Jordan. Future Internet 14, 79 (2022).
Google Scholar 
Moayedi, H. et al. Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with a number of metaheuristic algorithms for spatial susceptibility evaluation of seismic-induced landslide. Geomatics, Natl. Hazards Risk 10, 1879–1911. https://doi.org/10.1080/19475705.2019.1650126 (2019).Article 

Google Scholar 
Jahanafroozi, N. et al. New heuristic strategies for sustainable vitality efficiency evaluation of HVAC programs. Sustainability 14, 14446 (2022).
Google Scholar 
Liu, L., Zhang, S., Zhang, L., Pan, G. & Yu, J. Multi-UUV maneuvering counter-game for dynamic goal situation based on fractional-order recurrent neural network. IEEE Trans. Cybern. (2022).Luo, J., Wang, G., Li, G. & Pesce, G. Transport infrastructure connectivity and battle decision: a machine learning evaluation. Neural Comput. Appl. 34, 6585–6601 (2022).
Google Scholar 
Cheng, Y. et al. A dual-branch weakly supervised learning based network for correct mapping of woody vegetation from distant sensing photos. Int. J. Appl. Earth Obs. Geoinf. 124, 103499 (2023).
Google Scholar 
Kim, J.-H., Seong, N.-C. & Choi, W. Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models. Energies 13, 4361 (2020).
Google Scholar 
Bhatt, G. A. & Gandhi, P. R. in third International Conference on Trends in Electronics and Informatics (ICOEI). 622–627.Yin, Z., Jia, B., Wu, S., Dai, J. & Tang, D. Comprehensive forecast of city water-energy demand based on a neural network mannequin. Water 10, 385 (2018).
Google Scholar 
Malvoni, M., De Giorgi, M. G. & Congedo, P. M. Data on assist vector machines (SVM) mannequin to forecast photovoltaic energy. Data Brief 9, 13–16. https://doi.org/10.1016/j.dib.2016.08.024 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tian, H., Li, R., Salah, B. & Thinh, P.-H. Bi-objective optimization and environmental evaluation of SOFC-based cogeneration system: Performance analysis with numerous natural fluids. Process Saf. Environ. Prot. 178, 311–330 (2023).CAS 

Google Scholar 
Li, R., Xu, D., Tian, H. & Zhu, Y. Multi-objective research and optimization of a solar-boosted geothermal flash cycle built-in into an innovative mixed energy and desalinated water manufacturing course of: Application of a case research. Energy 282, 128706 (2023).
Google Scholar 
Zhang, Z., Altalbawy, F. M., Al-Bahrani, M. & Riadi, Y. Regret-based multi-objective optimization of carbon seize facility in CHP-based microgrid with carbon dioxide biking. J. Clean. Prod. 384, 135632 (2023).CAS 

Google Scholar 
Afzal, A. et al. Optimizing the thermal efficiency of solar vitality units utilizing meta-heuristic algorithms: A vital overview. Renew. Sustain. Energy Rev. 173, 112903 (2023).
Google Scholar 
Stoean, C. et al. Metaheuristic-based hyperparameter tuning for recurrent deep learning: Application to the prediction of solar vitality technology. Axioms 12, 266. https://doi.org/10.3390/axioms12030266 (2023).Article 

Google Scholar 
Alkhazaleh, H. A. et al. Prediction of thermal vitality demand utilizing fuzzy-based fashions synthesized with metaheuristic algorithms. Sustainability 14, 14385 (2022).
Google Scholar 
Houssein, E. H. in Advanced Control and Optimization Paradigms for Wind Energy Systems 165–187 (Springer, 2019).Corizzo, R., Ceci, M., Fanaee-T, H. & Gama, J. Multi-aspect renewable vitality forecasting. Inf. Sci. 546, 701–722. https://doi.org/10.1016/j.ins.2020.08.003 (2021).Article 
MathSciInternet 

Google Scholar 
Bessa, R. J., Trindade, A., Silva, C. S. P. & Miranda, V. Probabilistic solar energy forecasting in sensible grids utilizing distributed info. Int. J. Electrical Power Energy Syst. 72, 16–23. https://doi.org/10.1016/j.ijepes.2015.02.006 (2015).Article 

Google Scholar 
Liu, H., Chen, C., Lv, X., Wu, X. & Liu, M. Deterministic wind vitality forecasting: A overview of clever predictors and auxiliary strategies. Energy Convers. Manag. 195, 328–345 (2019).
Google Scholar 
Cavalcante, L., Bessa, R. J., Reis, M. & Browell, J. LASSO vector autoregression constructions for very short-term wind energy forecasting. Wind Energy 20, 657–675. https://doi.org/10.1002/we.2029 (2017).Article 
ADS 

Google Scholar 
Moayedi, H. & Mosavi, A. An innovative metaheuristic technique for solar vitality administration via a neural networks framework. Energies 14, 1196 (2021).
Google Scholar 
Abedinia, O., Amjady, N. & Ghadimi, N. Solar vitality forecasting based on hybrid neural network and improved metaheuristic algorithm. Comput. Intell. 34, 241–260 (2018).MathSciInternet 

Google Scholar 
Galván, I. M., Valls, J. M., Cervantes, A. & Aler, R. Multi-objective evolutionary optimization of prediction intervals for solar vitality forecasting with neural networks. Inf. Sci. 418, 363–382 (2017).
Google Scholar 
Tran, D.-H., Luong, D.-L. & Chou, J.-S. Nature-inspired metaheuristic ensemble mannequin for forecasting vitality consumption in residential buildings. Energy 191, 116552 (2020).
Google Scholar 
Halabi, L. M., Mekhilef, S. & Hossain, M. Performance analysis of hybrid adaptive neuro-fuzzy inference system fashions for predicting month-to-month international solar radiation. Appl. Energy 213, 247–261 (2018).ADS 

Google Scholar 
Zhao, Y., Moayedi, H., Bahiraei, M. & Foong, L. Ok. Employing TLBO and SCE for optimum prediction of the compressive power of concrete. Smart Struct. Syst. 26, 753. https://doi.org/10.12989/sss.2020.26.6.753 (2020).Louzazni, M. et al. Metaheuristic algorithm for photovoltaic parameters: comparative research and prediction with a firefly algorithm. Appl. Sci. 8, 339 (2018).
Google Scholar 
Bechouat, M. et al. Parameters identification of a photovoltaic module in a thermal system utilizing meta-heuristic optimization strategies. Int. J. Energy Environ. Eng. 8, 331–341 (2017).
Google Scholar 
Zhou, G., Moayedi, H. & Foong, L. Ok. Teaching–learning-based metaheuristic scheme for modifying neural computing in appraising vitality efficiency of constructing. Eng. Comput. 37, 3037–3048. https://doi.org/10.1007/s00366-020-00981-5 (2021).Article 

Google Scholar 
Vaisakh, T. & Jayabarathi, R. Analysis on clever machine learning enabled with meta-heuristic algorithms for solar irradiance prediction. Evolutionary Intelligence, 1–20 (2020).Abedinia, O., Amjady, N. & Ghadimi, N. Solar vitality forecasting based on hybrid neural network and improved metaheuristic algorithm. Comput. Intell. 34(1), 241–260. https://doi.org/10.1111/coin.12145 (2018).Article 
MathSciInternet 

Google Scholar 
Abdalla, O., Rezk, H. & Ahmed, E. M. Wind pushed optimization algorithm based international MPPT for PV system underneath non-uniform solar irradiance. Solar Energy 180, 429–444 (2019).ADS 

Google Scholar 
Lu, C. et al. Split-core magnetoelectric present sensor and wi-fi present measurement software. Measurement 188, 110527 (2022).
Google Scholar 
Li, P., Hu, J., Qiu, L., Zhao, Y. & Ghosh, B. Ok. A distributed financial dispatch technique for energy–water networks. IEEE Trans. Control Netw. Syst. 9, 356–366 (2021).MathSciInternet 

Google Scholar 
Zheng, X. et al. Combustion traits and thermal decomposition mechanism of the flame-retardant cable in city utility tunnel. Case Stud. Thermal Eng. 44, 102887 (2023).ADS 

Google Scholar 
Zhang, L. et al. Development of geopolymer-based composites for geothermal vitality purposes. J. Clean. Product. 419, 138202 (2023).CAS 

Google Scholar 
Cheng, B., Zhu, D., Zhao, S. & Chen, J. Situation-aware IoT service coordination utilizing the event-driven SOA paradigm. IEEE Trans. Netw. Serv. Manag. 13, 349–361 (2016).
Google Scholar 
Alkabbani, H., Ahmadian, A., Zhu, Q. & Elkamel, A. Machine learning and metaheuristic strategies for renewable energy forecasting: a latest overview. Front. Chem. Eng. 3, 665415. https://doi.org/10.3389/fceng.2021.665415 (2021).Article 

Google Scholar 
Gumar, A. Ok. & Demir, F. Solar photovoltaic energy estimation utilizing meta-optimized neural networks. Energies 15, 8669 (2022).
Google Scholar 
Aissaoui, A., Belhaouas, N., Hadjrioua, F., Bakria, Ok. & Aloui, I. in Artif. Intell. Renew. Energy Trans. 4, 592–603 (Springer).Feng, Y., Cui, N., Chen, Y., Gong, D. & Hu, X. Development of data-driven fashions for prediction of each day international horizontal irradiance in northwest China. J. Clean. Product. 223, 136–146 (2019).
Google Scholar 
Zang, H. et al. Short-term international horizontal irradiance forecasting based on a hybrid CNN-LSTM mannequin with spatiotemporal correlations. Renew. Energy 160, 26–41 (2020).
Google Scholar 
Faramarzi, A., Heidarinejad, M., Stephens, B. & Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190 (2020).Article 

Google Scholar 
Elsheikh, A. H., Shehabeldeen, T. A., Zhou, J., Showaib, E. & Abd Elaziz, M. Prediction of laser reducing parameters for polymethylmethacrylate sheets utilizing random vector purposeful hyperlink network built-in with equilibrium optimizer. J. Intell. Manuf. https://doi.org/10.1007/s10845-020-01617-7 (2020).Article 

Google Scholar 
Bayraktar, Z., Komurcu, M. & Werner, D. H. in 2010 IEEE Antennas and Propagation Society International Symposium. 1–4 (IEEE).Moayedi, H., Bui, D. T. & Ngo, P. T. T. Shuffled Frog Leaping Algorithm and Wind-Driven Optimization Technique Modified with Multilayer Perceptron. (2020).Bayraktar, Z. Adaptive Wind Driven Optimization Trained Artificial Neural Networks. arXiv preprint arXiv:1911.08942 (2019).Kashan, A. H. A brand new metaheuristic for optimization: optics impressed optimization (OIO). Comput. Op. Res. 55, 99–125 (2015).MathSciInternet 

Google Scholar 
ÖZDEMİR, M. & Öztürk, D. Comparative efficiency evaluation of optimum PID parameters tuning based on the optics impressed optimization strategies for computerized technology management. Energies 10, 2134 (2017).James, J. & Li, V. O. A social spider algorithm for international optimization. Appl. Soft Comput. 30, 614–627 (2015).
Google Scholar 
James, J. & Li, V. O. A social spider algorithm for fixing the non-convex financial load dispatch downside. Neurocomputing 171, 955–965 (2016).
Google Scholar 
Sankar, V. U., Basha, C. H., Mathew, D., Rani, C. & Busawon, Ok. in Soft Computing for Problem Solving 925–940 (Springer, 2020).Jalili, S. & Husseinzadeh Kashan, A. Optimum discrete design of metal tower constructions utilizing optics impressed optimization technique. Struct. Des. Tall Spec. Build. 27, e1466 (2018).
Google Scholar 
Özdemir, M. T. & Öztürk, D. (ICNES, 2016).El-Bages, M. & Elsayed, W. Social spider algorithm for fixing the transmission growth planning downside. Electric Power Syst. Res. 143, 235–243 (2017).
Google Scholar 
Ewees, A. A., El Aziz, M. A. & Elhoseny, M. in 2017 eighth worldwide convention on computing, communication and networking applied sciences (ICCCNT). 1–6 (IEEE).Abdi, H. & Williams, L. J. Principal part evaluation. Wiley Interdiscip. Rev.: Comput. Stat. 2, 433–459 (2010).
Google Scholar 
Mehrabi, M., Scaioni, M. & Previtali, M. Forecasting Air Quality in Kiev During 2022 Military Conflict Using Sentinel 5P and Optimized Machine Learning. IEEE Trans. Geosci. Remote Sens. (2023).

https://www.nature.com/articles/s41598-024-52462-0

Recommended For You