Quantifying wood decomposition by insects and fungi using computed tomography scanning and machine learning

Pan, Y. et al. A big and persistent carbon sink on the planet’s forests. Science 333, 988–993 (2011).ADS 
CAS 
PubMed 

Google Scholar 
Seibold, S. et al. The contribution of insects to world forest deadwood decomposition. Nature 597, 77–81 (2021).ADS 
CAS 
PubMed 

Google Scholar 
Filipiak, M. Nutrient dynamics in decomposing lifeless wood within the context of wood eater necessities: The ecological stoichiometry of saproxylophagous insects. In Saproxylic Insects (ed. Ulyshen, M. D.) 429–470 (Springer, 2018).
Google Scholar 
Weedon, J. T. et al. Global meta-analysis of wood decomposition charges: A job for trait variation amongst tree species?. Ecol. Lett. 12, 45–56 (2009).PubMed 

Google Scholar 
Oberle, B. et al. Accurate forest projections require long-term wood decay experiments as a result of plant trait results change by time. Glob. Change Biol. 26, 864–875 (2020).ADS 

Google Scholar 
Guo, C., Yan, E. & Cornelissen, J. H. C. Size issues for linking traits to ecosystem multifunctionality. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.06.003 (2022).Article 
PubMed 

Google Scholar 
Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).PubMed 

Google Scholar 
Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl. Acad. Sci. U.S.A. 117, 1–8 (2020).
Google Scholar 
Tláskal, V. et al. Complementary roles of wood-Inhabiting fungi and micro organism facilitate deadwood decomposition. mSystems 6, e01078-20 (2021).PubMed 
PubMed Central 

Google Scholar 
Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection and Use (Springer, 2006).
Google Scholar 
Arantes, V. & Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A overview. ACS Symp. Ser. 1158, 3–21 (2014).CAS 

Google Scholar 
Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal group and wood decay charge in an experimental area examine. Funct. Ecol. 32, 2571–2582 (2018).
Google Scholar 
Fukami, T. et al. Assembly historical past dictates ecosystem functioning: Evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).PubMed 

Google Scholar 
Wang, J. Y. et al. Durability of mass timber buildings: A overview of the organic dangers. Wood Fiber Sci. 50, 110–127 (2018).CAS 

Google Scholar 
Venugopal, P., Junninen, Okay., Linnakoski, R., Edman, M. & Kouki, J. Climate and wood high quality have decayer-specific results on fungal wood decomposition. For. Ecol. Manag. 360, 341–351 (2016).
Google Scholar 
Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).
Google Scholar 
Freschet, G. T., Weedon, J. T., Aerts, R., van Hal, J. R. & Cornelissen, J. H. C. Interspecific variations in wood decay charges: Insights from a brand new short-term methodology to review long-term wood decomposition. J. Ecol. 100, 161–170 (2012).
Google Scholar 
Chang, C. et al. Methodology issues for evaluating coarse wood and bark decay charges throughout tree species. Methods Ecol. Evol. 11, 828–838 (2020).
Google Scholar 
Hervé, V., Mothe, F., Freyburger, C., Gelhaye, E. & Frey-Klett, P. Density mapping of decaying wood using X-ray computed tomography. Int. Biodeterior. Biodegrad. 86, 358–363 (2014).
Google Scholar 
Williamson, G. B. & Wiemann, M. C. Measuring wood particular gravity…Correctly. Am. J. Bot. 97, 519–524 (2010).PubMed 

Google Scholar 
Van Der Wal, A., Gunnewiek, P. J. A. Okay., Cornelissen, J. H. C., Crowther, T. W. & De Boer, W. Patterns of pure fungal group meeting throughout preliminary decay of coniferous and broadleaf tree logs. Ecosphere 7, e01393 (2016).
Google Scholar 
Saint-Germain, M., Buddle, C. M. & Drapeau, P. Substrate choice by saprophagous wood-borer larvae inside extremely variable hosts. Entomol. Exp. Appl. 134, 227–233 (2010).
Google Scholar 
Lettenmaier, L. et al. Beetle variety is increased in sunny forests resulting from increased microclimatic heterogeneity in deadwood. Oecologia https://doi.org/10.1007/s00442-022-05141-8 (2022).Article 
PubMed 

Google Scholar 
Gao, S. et al. A crucial evaluation of strategies for speedy and nondestructive willpower of wood density in standing bushes. Ann. For. Sci. 74, 1–13 (2017).
Google Scholar 
Arnstadt, T. et al. Dynamics of fungal group composition, decomposition and ensuing deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. For. Ecol. Manag. 382, 129–142 (2016).
Google Scholar 
Gessner, M. O. Ergosterol as a measure of fungal biomass. In Methods to Study Litter Decomposition (eds Bärlocher, F. et al.) 247–255 (Springer, 2020). https://doi.org/10.1007/978-3-030-30515-4_27.Chapter 

Google Scholar 
Baldrian, P. et al. Responses of the extracellular enzyme actions in hardwood forest to soil temperature and seasonality and the potential results of local weather change. Soil Biol. Biochem. 56, 60–68 (2013).CAS 

Google Scholar 
Strid, Y., Schroeder, M., Lindahl, B., Ihrmark, Okay. & Stenlid, J. Bark beetles have a decisive impression on fungal communities in Norway spruce stem sections. Fungal Ecol. 7, 47–58 (2014).
Google Scholar 
Hagge, J. et al. Bark protection shifts meeting processes of microbial decomposer communities in lifeless wood. Proc. R. Soc. B Biol. Sci. 286, 20191744 (2019).
Google Scholar 
Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. Insect–fungus interactions in lifeless wood. In Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).
Google Scholar 
Leach, J. G., Ork, L. W. & Christensen, C. Further research on the interrelationship of insects and fungi within the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).
Google Scholar 
Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting results of insect exclusion on wood loss in a temperate forest. Ecosphere 5, art47 (2014).
Google Scholar 
Shigo, A. L. & Marx, H. G. Compartmentalization of decay in bushes (1977).De Ligne, L. et al. Studying the spatio-temporal dynamics of wood decay with X-ray CT scanning. Holzforschung 76, 408–420 (2022).
Google Scholar 
Freyburger, C., Longuetaud, F., Mothe, F., Constant, T. & Leban, J. M. Measuring wood density by technique of X-ray pc tomography. Ann. For. Sci. 66, 804 (2009).
Google Scholar 
Wei, Q., Leblon, B. & La Rocque, A. On the usage of X-ray computed tomography for figuring out wood properties: A overview. Can. J. For. Res. 41, 2120–2140 (2011).
Google Scholar 
Fuchs, A., Schreyer, A., Feuerbach, S. & Korb, J. A brand new method for termite monitoring using pc tomography and endoscopy. Int. J. Pest Manag. 50, 63–66 (2004).
Google Scholar 
Choi, B., Himmi, S. Okay. & Yoshimura, T. Quantitative statement of the foraging tunnels in Sitka spruce and Japanese cypress prompted by the drywood termite Incisitermes minor (Hagen) by 2D and 3D X-ray pc tomography (CT). Holzforschung 71, 535–542 (2017).CAS 

Google Scholar 
Bélanger, S. et al. Effect of temperature and tree species on harm development prompted by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in lately burned logs. J. Econ. Entomol. 106, 1331–1338 (2013).PubMed 

Google Scholar 
Pereira Junior, A. & Garcia de Carvalho, M. An preliminary examine in wood tomographic picture classification using the SVM and CNN methods. In Proceedings of the seventeenth International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) Vol. 4 575–581 (2022).Kautz, M., Peter, F. J., Harms, L., Kammen, S. & Delb, H. Patterns, drivers and detectability of infestation signs following assaults by the European spruce bark beetle. J. Pest Sci. https://doi.org/10.1007/s10340-022-01490-8 (2022).Article 

Google Scholar 
Ehnström, B. & Axelsson, R. Insektsgnag i bark och ved (ArtDatabanken SLU, 2002).
Google Scholar 
Philpott, T. J., Prescott, C. E., Chapman, W. Okay. & Grayston, S. J. Nitrogen translocation and accumulation by a cord-forming fungus (Hypholoma fasciculare) into simulated woody particles. For. Ecol. Manag. 315, 121–128 (2014).
Google Scholar 
Kahl, T. et al. Wood decay charges of 13 temperate tree species in relation to wood properties, enzyme actions and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).
Google Scholar 
Deflorio, G., Johnson, C., Fink, S. & Schwarze, F. W. M. R. Decay growth in residing sapwood of coniferous and deciduous bushes inoculated with six wood decay fungi. For. Ecol. Manag. 255, 2373–2383 (2008).
Google Scholar 
Fuhr, M. J., Schubert, M., Schwarze, F. W. M. R. & Herrmann, H. J. Modelling the hyphal development of the wood-decay fungus Physisporinus vitreus. Fungal Biol. 115, 919–932 (2011).CAS 
PubMed 

Google Scholar 
Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230–233. https://doi.org/10.1109/ISBI.2011.5872394 (2011).Dodds, Okay. J., Graber, C. & Stephen, F. M. Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae). Environ. Entomol. 30, 17–22 (2001).
Google Scholar 
Graham, S. A. Temperature as a limiting issue within the lifetime of subcortical insects. J. Econ. Entomol. 17, 377–383 (1924).
Google Scholar 
Baldrian, P. et al. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 6, 1–11 (2013).
Google Scholar 
Šnajdr, J. et al. Spatial variability of enzyme actions and microbial biomass within the higher layers of Quercus petraea forest soil. Soil Biol. Biochem. 40, 2068–2075 (2008).
Google Scholar 
Möller, G. Struktur- und Substratbindung holzbewohnender Insekten, Schwerpunkt Coleoptera—Käfer. Dissertation at Freien Universität Berlin (Freie Universität Berlin, 2009).
Google Scholar 
Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).CAS 
PubMed 

Google Scholar 
Steger, C., Ulrich, M. & Wiedemann, C. Machine Vision Algorithms and Applications (Wiley, 2008).
Google Scholar 
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation (Springer, 2015).
Google Scholar 
Jansche, M. Maximum anticipated F-measure coaching of logistic regression fashions. In Proceedings of the convention on human language expertise and empirical meth-ods in pure language processing 692–699 (Association for Computational Linguistics, 2005).Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
Google Scholar 
Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
Chollet, F. Keras. https://github.com/fchollet/keras (2015).Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous programs. Tensorflow.org. (2015).R Core Team. R: A language and surroundings for statistical computing (2020).

https://www.nature.com/articles/s41598-022-20377-3

Recommended For You