Challenges and opportunities in quantum machine learning

Challenges and opportunities in quantum machine learning

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).Brookes, J. C. Quantum results in biology: golden rule in enzymes, olfaction, photosynthesis and magnetodetection. Proc. R. Soc. A 473, 20160822 (2017).Article 

Google Scholar 
Deutsch, D. Quantum principle, the Church–Turing precept and the common quantum pc. Proc. R. Soc. A 400, 97–117 (1985).MathSciInternet 
MATH 

Google Scholar 
Wiebe, N., Kapoor, A. & Svore, Okay. M. Quantum deep learning. Preprint at https://arxiv.org/abs/1412.3489 (2014).Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172–185 (2015).MATH 
Article 

Google Scholar 
Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).Article 

Google Scholar 
Arute, F. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).Article 

Google Scholar 
Cincio, L., Subaşí, Y., Sornborger, A. T. & Coles, P. J. Learning the quantum algorithm for state overlap. New J. Phys. 20, 113022 (2018).Article 

Google Scholar 
Tranter, A. D. Multiparameter optimisation of a magneto-optical entice utilizing deep learning. Nat. Commun. 9, 4360 (2018).Article 

Google Scholar 
Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, Okay. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).
Google Scholar 
Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019).Article 

Google Scholar 
Tang, E. A quantum-inspired classical algorithm for advice techniques. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 217–228 (Association for Computing Machinery, 2019).Huang, H.-Y. Power of knowledge in quantum machine learning. Nat. Commun. 12, 2631 (2021).Article 

Google Scholar 
Banchi, L., Pereira, J. & Pirandola, S. Generalization in quantum machine learning: a quantum info standpoint. PRX Quantum 2, 040321 (2021).Article 

Google Scholar 
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).MathSciInternet 
Article 

Google Scholar 
Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).Article 

Google Scholar 
Chiribella, G., D’Ariano, G. M. & Perinotti, P. Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009).MathSciInternet 
MATH 
Article 

Google Scholar 
D’Alessandro, D. Introduction to Quantum Control and Dynamics (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science, Taylor & Francis, 2007).Verdon-Akzam, G. Quantum analog–digital interconversion for encoding and decoding quantum indicators. US patent software 17,063,595 (2020).Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum assist vector machine for large information classification. Phys. Rev. Lett. 113, 130503 (2014).Article 

Google Scholar 
Schuld, M. & Killoran, N. Quantum machine learning in function Hilbert areas. Phys. Rev. Lett. 122, 040504 (2019).Article 

Google Scholar 
Lloyd, S., Schuld, M., Ijaz, A., Izaac, J. & Killoran, N. Quantum embeddings for machine learning. Preprint at https://arxiv.org/abs/2001.03622 (2020).Schuld, M., Sweke, R. & Meyer, J. J. Effect of knowledge encoding on the expressive energy of variational quantum-machine-learning fashions. Phys. Rev. A 103, 032430 (2021).MathSciInternet 
Article 

Google Scholar 
Roffe, J. Quantum error correction: an introductory information. Contemp. Phys. 60, 226–245 (2019).Article 

Google Scholar 
Shor, P. W. Scheme for lowering decoherence in quantum pc reminiscence. Phys. Rev. A 52, R2493 (1995).Article 

Google Scholar 
Havlíček, V. Supervised learning with quantum-enhanced function areas. Nature 567, 209–212 (2019).Article 

Google Scholar 
Liu, Y., Arunachalam, S. & Temme, Okay. A rigorous and strong quantum speed-up in supervised machine learning. Nat. Phys. 17, 1013–1017 (2021).Schuld, M. Supervised quantum machine learning fashions are kernel strategies. Preprint at https://arxiv.org/abs/2101.11020 (2021).Otterbach, J. S. et al. Unsupervised machine learning on a hybrid quantum pc. Preprint at https://arxiv.org/abs/1712.05771 (2017).Kerenidis, I., Landman, J., Luongo, A. & Prakash, A. q-means: a quantum algorithm for unsupervised machine learning. In Advances in Neural Information Processing Systems Vol. 32 (eds Wallach, H. M. et al.) 4136–4146 (Curran, 2019).Saggio, V. Experimental quantum speed-up in reinforcement learning brokers. Nature 591, 229–233 (2021).Article 

Google Scholar 
Skolik, A., Jerbi, S. & Dunjko, V. Quantum brokers in the gymnasium: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022).Article 

Google Scholar 
Huang, H.-Y. et al. Quantum benefit in learning from experiments. Science 376, 1182–1186 (2022).Article 

Google Scholar 
LaRose, R. & Coyle, B. Robust information encodings for quantum classifiers. Phys. Rev. A 102, 032420 (2020).Article 

Google Scholar 
Caro, M. C. et al. Generalization in quantum machine learning from few coaching information. Nat. Commun. 13, 4919 (2022).Article 

Google Scholar 
Caro, M. C. et al. Out-of-distribution generalization for learning quantum dynamics. Preprint at https://arxiv.org/abs/2204.10268 (2022).Caro, M. C., Gil-Fuster, E., Meyer, J. J., Eisert, J. & Sweke, R. Encoding-dependent generalization bounds for parametrized quantum circuits. Quantum 5, 582 (2021).Article 

Google Scholar 
Cerezo, M. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).Article 

Google Scholar 
Wan, Okay. H., Dahlsten, O., Kristjánsson, H., Gardner, R. & Kim, M. S. Quantum generalisation of feedforward neural networks. npj Quantum Inf. 3, 36 (2017).Article 

Google Scholar 
Beer, Okay. Training deep quantum neural networks. Nat. Commun. 11, 808 (2020).Article 

Google Scholar 
Schuld, M., Sinayskiy, I. & Petruccione, F. The quest for a quantum neural community. Quantum Inf. Process. 13, 2567–2586 (2014).MathSciInternet 
MATH 
Article 

Google Scholar 
Dallaire-Demers, P.-L. & Killoran, N. Quantum generative adversarial networks. Phys. Rev. A 98, 012324 (2018).Article 

Google Scholar 
Farhi, E. & Neven, H. Classification with quantum neural networks on close to time period processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).Killoran, N. Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019).Article 

Google Scholar 
Bausch, J. Recurrent quantum neural networks. Adv. Neural. Inf. Process. Syst. 33, 1368–1379 (2020).
Google Scholar 
Broughton, M. et al. TensorFlow Quantum: a software program framework for quantum machine learning. Preprint at https://arxiv.org/abs/2003.02989 (2020).Verdon, G., Marks, J., Nanda, S., Leichenauer, S. & Hidary, J. Quantum Hamiltonian-based fashions and the variational quantum thermalizer algorithm. Preprint at https://arxiv.org/abs/1910.02071 (2019).Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).MATH 

Google Scholar 
Kübler, J. M., Buchholz, S. & Schölkopf, B. The inductive bias of quantum kernels. Adv. Neural. Inf. Process. Syst. 34, 12661–12673 (2021).
Google Scholar 
Kübler, J. M., Arrasmith, A., Cincio, L. & Coles, P. J. An adaptive optimizer for measurement-frugal variational algorithms. Quantum 4, 263 (2020).Article 

Google Scholar 
Arrasmith, A., Cincio, L., Somma, R. D. & Coles, P. J. Operator sampling for shot-frugal optimization in variational algorithms. Preprint at https://arxiv.org/abs/2004.06252 (2020).Gu, A., Lowe, A., Dub, P. A., Coles, P. J. & Arrasmith, A. Adaptive shot allocation for quick convergence in variational quantum algorithms. Preprint at https://arxiv.org/abs/2108.10434 (2021).Sweke, R. Stochastic gradient descent for hybrid quantum–classical optimization. Quantum 4, 314 (2020).Article 

Google Scholar 
Stokes, J., Izaac, J., Killoran, N. & Carleo, G. Quantum pure gradient. Quantum 4, 269 (2020).Article 

Google Scholar 
Koczor, B. & Benjamin, S. C. Quantum pure gradient generalised to non-unitary circuits. Preprint at https://arxiv.org/abs/1912.08660 (2019).Sharma, Okay. et al. Reformulation of the no-free-lunch theorem for entangled information units. Phys. Rev. Lett. 128, 070501 (2022).Article 

Google Scholar 
Abbas, A. The energy of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).Article 

Google Scholar 
Rosenblatt, F. The Perceptron, a Perceiving and Recognizing Automaton (Project PARA) Report No. 85-460-1 (Cornell Aeronautical Laboratory, 1957).Haykin, S. Neural Networks: a Comprehensive Foundation (Prentice Hall, 1994).Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).MATH 
Article 

Google Scholar 
Hubregtsen, T. et al. Training quantum embedding kernels on near-term quantum computer systems. Preprint at https://arxiv.org/abs/2105.02276 (2021).Thanasilp, S., Wang, S., Nghiem, N. A., Coles, P. J. & Cerezo, M. Subtleties in the trainability of quantum machine learning fashions. Preprint at https://arxiv.org/abs/2110.14753 (2021).Huang, H.-Y. Quantum benefit in learning from experiments. Science 376, 1182–1186 (2022).Article 

Google Scholar 
Cotler, J., Huang, H.-Y. & McClean, J. R. Revisiting dequantization and quantum benefit in learning duties. Preprint at https://arxiv.org/abs/2112.00811 (2021).Chen, S., Cotler, J., Huang, H.-Y. & Li, J. A hierarchy for duplicate quantum benefit. Preprint at https://arxiv.org/abs/2111.05874 (2021).Chen, S., Cotler, J., Huang, H.-Y. & Li, J. Exponential separations between learning with and with out quantum reminiscence. In 2021 IEEE 62nd Annual Symp. on Foundations of Computer Science (FOCS) 574–585 (IEEE, 2022).Perrier, E., Youssry, A. & Ferrie, C. QDataSet: quantum datasets for machine learning. Preprint at https://arxiv.org/abs/2108.06661 (2021).Schatzki, L., Arrasmith, A., Coles, P. J. & Cerezo, M. Entangled datasets for quantum machine learning. Preprint at https://arxiv.org/abs/2109.03400 (2021).Arrasmith, A., Holmes, Z., Cerezo, M. & Coles, P. J. Equivalence of quantum barren plateaus to value focus and slender gorges. Quantum Sci. Technol. 7, 045015 (2022).Article 

Google Scholar 
Bittel, L. & Kliesch, M. Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021).MathSciInternet 
Article 

Google Scholar 
Bilkis, M., Cerezo, M., Verdon, G., Coles, P. J. & Cincio, L. A semi-agnostic ansatz with variable construction for quantum machine learning. Preprint at https://arxiv.org/abs/2103.06712 (2021).LaRose, R., Tikku, A., O’Neel-Judy, É., Cincio, L. & Coles, P. J. Variational quantum state diagonalization. npj Quantum Inf. 5, 57 (2019).Article 

Google Scholar 
Kiani, B. T., Lloyd, S. & Maity, R. Learning unitaries by gradient descent. Preprint https://arxiv.org/abs/2001.11897 (2020).Larocca, M., Ju, N., García-Martín, D., Coles, P. J. & Cerezo, M. Theory of overparametrization in quantum neural networks. Preprint at https://arxiv.org/abs/2109.11676 (2021).McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural community coaching landscapes. Nat. Commun. 9, 4812 (2018).Article 

Google Scholar 
Cerezo, M., Sone, A., Volkoff, T., Cincio, L. & Coles, P. J. Cost operate dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12, 1791 (2021).Article 

Google Scholar 
Cerezo, M. & Coles, P. J. Higher order derivatives of quantum neural networks with barren plateaus. Quantum Sci. Technol. 6, 035006 (2021).Article 

Google Scholar 
Arrasmith, A., Cerezo, M., Czarnik, P., Cincio, L. & Coles, P. J. Effect of barren plateaus on gradient-free optimization. Quantum 5, 558 (2021).Article 

Google Scholar 
Holmes, Z., Sharma, Okay., Cerezo, M. & Coles, P. J. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3, 010313 (2022).Article 

Google Scholar 
Pesah, A. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021).
Google Scholar 
Volkoff, T. & Coles, P. J. Large gradients by way of correlation in random parameterized quantum circuits. Quantum Sci. Technol. 6, 025008 (2021).Article 

Google Scholar 
Sharma, Okay., Cerezo, M., Cincio, L. & Coles, P. J. Trainability of dissipative perceptron-based quantum neural networks. Phys. Rev. Lett. 128, 180505 (2022).MathSciInternet 
Article 

Google Scholar 
Holmes, Zoë Barren plateaus preclude learning scramblers. Phys. Rev. Lett. 126, 190501 (2021).MathSciInternet 
Article 

Google Scholar 
Marrero, C. O., Kieferova, M. & Wiebe, N. Entanglement induced barren plateaus. PRX Quantum 2, 040316 (2020).Article 

Google Scholar 
Uvarov, A. V. & Biamonte, J. D. On barren plateaus and value operate locality in variational quantum algorithms. J. Phys. A 54, 245301 (2021).MathSciInternet 
Article 

Google Scholar 
Patti, T. L., Najafi, Okay., Gao, X. & Yelin, S. F. Entanglement devised barren plateau mitigation. Phys. Rev. Res. 3, 033090 (2021).Article 

Google Scholar 
Wang, S. Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12, 6961 (2021).Article 

Google Scholar 
Verdon, G. et al. Learning to study with quantum neural networks by way of classical neural networks. Preprint at https://arxiv.org/abs/1907.05415 (2019).Verdon, G. et al. Quantum graph neural networks. Preprint at https://arxiv.org/abs/1909.12264 (2019).Bronstein, M. M., Bruna, J., Cohen, T. & Veličković, P. Geometric deep learning: grids, teams, graphs, geodesics, and gauges. Preprint at https://arxiv.org/abs/2104.13478 (2021).Larocca, M. et al. Group-invariant quantum machine learning. Preprint at https://arxiv.org/abs/2205.02261 (2022).Skolik, A., Cattelan, M., Yarkoni, S., Bäck, T. & Dunjko, V. Equivariant quantum circuits for learning on weighted graphs. Preprint at https://arxiv.org/abs/2205.06109 (2022).Meyer, J. J. et al. Exploiting symmetry in variational quantum machine learning. Preprint at https://arxiv.org/abs/2205.06217 (2022).Larocca, M. et al. Diagnosing barren plateaus with instruments from quantum optimum management. Preprint at https://arxiv.org/abs/2105.14377 (2021).Wang, S. et al. Can error mitigation enhance trainability of noisy variational quantum algorithms? Preprint at https://arxiv.org/abs/2109.01051 (2021).Deshpande, A. et al. Tight bounds on the convergence of noisy random circuits to the uniform distribution. Preprint at https://arxiv.org/abs/2112.00716 (2021).Hakkaku, S., Tashima, Y., Mitarai, Okay., Mizukami, W. & Fujii, Okay. Quantifying fermionic nonlinearity of quantum circuits. Preprint at https://arxiv.org/abs/2111.14599 (2021).Bultrini, D. et al. The battle of unpolluted and soiled qubits in the period of partial error correction. Preprint at https://arxiv.org/abs/2205.13454 (2022).Temme, Okay., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).MathSciInternet 
Article 

Google Scholar 
Czarnik, P., Arrasmith, A., Coles, P. J. & Cincio, L. Error mitigation with Clifford quantum-circuit information. Quantum 5, 592 (2021).Article 

Google Scholar 
Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum–classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn 90, 032001 (2021).Article 

Google Scholar 
Sharma, Okay., Khatri, S., Cerezo, M. & Coles, P. J. Noise resilience of variational quantum compiling. New J. Phys. 22, 043006 (2020).MathSciInternet 
Article 

Google Scholar 
Cincio, L., Rudinger, Okay., Sarovar, M. & Coles, P. J. Machine learning of noise-resilient quantum circuits. PRX Quantum 2, 010324 (2021).Article 

Google Scholar 
Ho, A., Verdon, G. & Mohseni, M. Quantum machine notion. US patent software 17,019,564 (2020).Meyer, J. J., Borregaard, J. & Eisert, J. A variational toolbox for quantum multi-parameter estimation. NPJ Quantum Inf. 7, 89 (2021).Article 

Google Scholar 
Beckey, J. L., Cerezo, M., Sone, A. & Coles, P. J. Variational quantum algorithm for estimating the quantum Fisher info. Phys. Rev. Res. 4, 013083 (2022).Article 

Google Scholar 
Wang, J. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017).Article 

Google Scholar 
Layden, D. & Cappellaro, P. Spatial noise filtering by error correction for quantum sensing. npj Quantum Inf. 4, 30 (2018).Article 

Google Scholar 
Johnson, P. D., Romero, J., Olson, J., Cao, Y. & Aspuru-Guzik, A. QVECTOR: an algorithm for device-tailored quantum error correction. Preprint at https://arxiv.org/abs/1711.02249 (2017).Peruzzo, A. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun, 5, 4213 (2014).Article 

Google Scholar 
McArdle, S. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5, 75 (2019).Article 

Google Scholar 
Cirstoiu, C. Variational quick forwarding for quantum simulation past the coherence time. npj Quantum Inf. 6, 82 (2020).Article 

Google Scholar 
Huang, H.-Y., Kueng, R. & Preskill, J. Information-theoretic bounds on quantum benefit in machine learning. Phys. Rev. Lett. 126, 190505 (2021).MathSciInternet 
Article 

Google Scholar 
Aharonov, D., Cotler, J. & Qi, X.-L. Quantum algorithmic measurement. Nat. Commun. 13, 887 (2022).Article 

Google Scholar 
Chia, N.-H. et al. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. In Proc. 52nd Annual ACM SIGACT Symposium on Theory of Computing 387–400 (Association for Computing Machinery, 2020).Preskill, J. Quantum computing in the NISQ period and past. Quantum 2, 79 (2018).Article 

Google Scholar 
Huang, H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably environment friendly machine learning for quantum many-body issues. Preprint at https://arxiv.org/abs/2106.12627 (2021).Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, B864–B871 (1964).MathSciInternet 
Article 

Google Scholar 
Kohn, W. Nobel lecture: Electronic construction of matter—wave features and density functionals. Rev. Mod. Phys. 71, 1253–1266 (1999).Article 

Google Scholar 
Alcazar, J., Leyton-Ortega, V. & Perdomo-Ortiz, A. Classical versus quantum fashions in machine learning: insights from a finance software. Mach. Learn. Sci. Technol. 1, 035003 (2020).Article 

Google Scholar 
Bouland, A., van Dam, W., Joorati, H., Kerenidis, I. & Prakash, A. Prospects and challenges of quantum finance. Preprint at https://arxiv.org/abs/2011.06492 (2020).Manning C. & Schutze, H. Foundations of Statistical Natural Language Processing (MIT Press, 1999).Russ, J. C. The Image Processing Handbook (CRC Press, 2006).Grover, L. Okay. A quick quantum mechanical algorithm for database search. In Proc. twenty eighth Annual ACM Symposium on Theory of Computing 212–219 (Association for Computing Machinery, 1996).Bernstein, E. & Vazirani, U. Quantum complexity principle. SIAM J. Comput. 26, 1411–1473 (1997).MathSciInternet 
MATH 
Article 

Google Scholar 
Babbush, R. Focus past quadratic speedups for error-corrected quantum benefit. PRX Quantum 2, 010103 (2021).Article 

Google Scholar 
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).Article 

Google Scholar 
Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Simulating Hamiltonian dynamics with a truncated Taylor collection. Phys. Rev. Lett. 114, 090502 (2015).Article 

Google Scholar 
Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum reminiscence. Nat. Photon. 3, 706–714 (2009).Article 

Google Scholar 
Sanchez-Lengeling, B. & Aspuru-Guzik, Alán Inverse molecular design utilizing machine learning: generative fashions for matter engineering. Science 361, 360–365 (2018).Article 

Google Scholar 

https://www.nature.com/articles/s43588-022-00311-3

Recommended For You