Classification of Parkinson’s disease and its stages using machine learning

Wiens, J. & Shenoy, E. S. Machine learning for healthcare: On the verge of a serious shift in healthcare epidemiology. Clin. Infect. Dis. 66, 149–153. https://doi.org/10.1093/CID/CIX731 (2018).Article 
PubMed 

Google Scholar 
Templeton, J. M., Poellabauer, C. & Schneider, S. Design of a neurocognitive digital well being system (NDHS) for neurodegenerative ailments. in Proceedings of the 2021 Workshop on Future of Digital Biomarkers 26–33, https://doi.org/10.1145/3469266.3471157 (2021).Far, M. S., Eickhoff, S. B., Goni, M. & Dukart, J. Exploring test-retest reliability and longitudinal stability of digital biomarkers for Parkinson disease within the m-power information set: Cohort research. J. Med. Internet Res. 23, e26608. https://doi.org/10.2196/26608 (2021).Article 

Google Scholar 
Waring, J., Lindvall, C. & Umeton, R. Automated machine learning: Review of the state-of-the-art and alternatives for healthcare. Artif. Intell. Med. 104, 101822. https://doi.org/10.1016/J.ARTMED.2020.101822 (2020).Article 
PubMed 

Google Scholar 
Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A. & Escobar, G. Big information in well being care: Using analytics to determine and handle high-risk and high-cost sufferers. Health 33, 1123–1131. https://doi.org/10.1377/HLTHAFF.2014.0041 (2017).Article 

Google Scholar 
Marella, W. M., Sparnon, E. & Finley, E. Screening digital well being record-related affected person security experiences using machine learning. J. Patient Saf. 13, 31–36. https://doi.org/10.1097/PTS.0000000000000104 (2017).Article 
PubMed 

Google Scholar 
Deng, Okay. et al. Heterogeneous digital biomarker integration out-performs affected person self-reports in predicting Parkinson’s disease. Commun. Biol.https://doi.org/10.1038/s42003-022-03002-x (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Maetzler, W. & Pilotto, A. Digital evaluation at house: mPower towards Parkinson disease. Nat. Rev. Neurol. 2021(17), 661–662. https://doi.org/10.1038/s41582-021-00567-9 (2021).Article 

Google Scholar 
Hansen, C., Sanchez-Ferro, A. & Maetzler, W. How cell well being expertise and digital well being data will change care of sufferers with Parkinson’s disease. J. Parkinson Dis.https://doi.org/10.3233/JPD-181498 (2018).Article 

Google Scholar 
Byrom, B., Wenzel, Okay., Pierce, J., Wenzel, Okay. & Pierce, J. Computerised medical assessments: Derived advanced medical endpoints from affected person self-report information. EPro 1, 179–202. https://doi.org/10.4324/9781315580142-14 (2016).Article 

Google Scholar 
Templeton, J. M., Poellabauer, C. & Schneider, S. The Case for Symptom-Specific Neurological Digital Biomarkers (Springer, 2021).
Google Scholar 
Kumar, S. et al. Mobile well being expertise analysis. Am. J. Prev. Med. 45, 228–236. https://doi.org/10.1016/j.amepre.2013.03.017 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Templeton, J. M., Poellabauer, C. & Schneider, S. Enhancement of neurocognitive assessments using smartphone capabilities: Systematic assessment. JMIR mHealth and uHealth 8, e15517. https://doi.org/10.2196/15517 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Löfgren, N., Conradsson, D., Rennie, L., Moe-Nilssen, R. & Franzén, E. The results of built-in single- and dual-task coaching on automaticity and consideration allocation in Parkinson’s disease: A secondary evaluation from a randomized trial. Neuropsychology 33, 147–156. https://doi.org/10.1037/neu0000496 (2019).Article 
PubMed 

Google Scholar 
Nasreddine, Z. S. et al. The montreal cognitive evaluation, MoCA: A short screening device for delicate cognitive impairment. J. Am. Geriatr. Soc. 53, 695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x (2005).Article 
PubMed 

Google Scholar 
Tombaugh, T. N. & McIntyre, N. J. The mini-mental state examination: A complete assessment. J. Am. Geriatr. Soc. 40, 922–935. https://doi.org/10.1111/j.1532-5415.1992.tb01992.x (1992).CAS 
Article 
PubMed 

Google Scholar 
Neff, C., Wang, M. C. & Martel, H. Using the PDQ-39 in routine take care of Parkinson’s disease. Parkinson. Relat. Disord. 53, 105–107. https://doi.org/10.1016/J.PARKRELDIS.2018.05.019 (2018).Article 

Google Scholar 
Deshpande, P., Sudeepthi, B., Rajan, S. & Abdul Nazir, C. Patient-reported outcomes: A brand new period in medical analysis. Perspect. Clin. Res. 2, 137. https://doi.org/10.4103/2229-3485.86879 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhan, A. et al. Using smartphones and machine learning to quantify Parkinson disease severity the cell Parkinson disease rating. JAMA Neurol. 75, 876–880. https://doi.org/10.1001/jamaneurol.2018.0809 (2018).ADS 
Article 
PubMed 
PubMed Central 

Google Scholar 
De Vos, M., Prince, J., Buchanan, T., FitzGerald, J. J. & Antoniades, C. A. Discriminating progressive supranuclear palsy from Parkinson’s disease using wearable expertise and machine learning. Gait Posture 77, 257–263. https://doi.org/10.1016/J.GAITPOST.2020.02.007 (2020).Article 
PubMed 

Google Scholar 
Bhardwaj, R., Nambiar, A. R. & Dutta, D. A research of machine learning in healthcare. Proc. Int. Comput. Softw. Appl. Conf. 2, 236–241. https://doi.org/10.1109/COMPSAC.2017.164 (2017).Article 

Google Scholar 
Hadirah, N., Anwar, Okay., Saian, R. & Abu Bakar, S. An enhanced ant colony optimization with gini index for predicting kind 2 diabetes. AIP Proc.https://doi.org/10.1063/5.0057315 (2021).Article 

Google Scholar 
Uddin, S., Khan, A., Hossain, M. E. & Moni, M. A. Comparing totally different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19, 1–16. https://doi.org/10.1186/S12911-019-1004-8 (2019).Article 

Google Scholar 
Ricciardi, C. et al. Classifying totally different stages of Parkinson’s disease by random forests. IFMBE Proc. 76, 1155–1162. https://doi.org/10.1007/978-3-030-31635-8_140 (2019).Article 

Google Scholar 
Domingos, P. Tapping into the people information wanted to advance machine learning purposes. Reviewhttps://doi.org/10.1145/2347736.2347755 (2012).Article 

Google Scholar 
Vega, J. et al. Back to analogue: Self-reporting for Parkinson’s disease. J. Parkinson Dis.https://doi.org/10.1145/3173574.3173648 (2018).Article 

Google Scholar 
Nicolson, P. J., Hinman, R. S., Wrigley, T. V., Stratford, P. W. & Bennell, Okay. L. Self-reported house train adherence: A validity and reliability research using hid accelerometers. J. Orthop. Sports Phys. Ther. 48, 943–950. https://doi.org/10.2519/jospt.2018.8275 (2018).Article 
PubMed 

Google Scholar 
Reychav, I. et al. How dependable are self-assessments using cell expertise in healthcare? The results of expertise identification and self-efficacy. Comput. Hum. Behav. 91, 52–61. https://doi.org/10.1016/j.chb.2018.09.024 (2019).Article 

Google Scholar 
Prince, S. A. et al. A comparability of self-reported and machine measured sedentary behaviour in adults: A scientific assessment and meta-analysis. AIP Proc.https://doi.org/10.1186/s12966-020-00938-3 (2020).Article 

Google Scholar 
Hoehn, M. M. & Yahr, M. D. Parkinsonism. Neurology 17, 427–427. https://doi.org/10.1212/WNL.17.5.427 (1967).CAS 
Article 
PubMed 

Google Scholar 
Padman, N., Swarnalatha, R., Venkatesh, V. & Kumar, N. Telediagnosis of Parkinson’s disease symptom severity using H&Y scale. J. Eng. Sci. Technol. 15, 1466–1480 (2020).
Google Scholar 
Goetz, C. G. et al. Movement dysfunction society-sponsored revision of the unified Parkinson’s disease ranking scale (MDS-UPDRS): Scale presentation and clinimetric testing outcomes. Mov. Disord. 23, 2129–2170. https://doi.org/10.1002/mds.22340 (2008).Article 
PubMed 

Google Scholar 
Martinez-Martin, P. et al. Validation research of the hoehn and yahr scale included within the MDS-UPDRS. Mov. Disord. 33, 651–652. https://doi.org/10.1002/MDS.27242 (2018).Article 
PubMed 

Google Scholar 
Evers, L. J., Krijthe, J. H., Meinders, M. J., Bloem, B. R. & Heskes, T. M. Measuring Parkinson’s disease over time: The real-world within-subject reliability of the MDS-UPDRS. Mov. Disord. 34, 1480–1487. https://doi.org/10.1002/MDS.27790 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Post, B. et al. Young onset Parkinson’s disease: A contemporary and tailor-made strategy. J. Parkinson Dis.https://doi.org/10.3233/JPD-202135 (2020).Article 

Google Scholar 
Qutubuddin, A. A. et al. Validating the Berg Balance Scale for sufferers with Parkinson’s disease: A key to rehabilitation analysis. Arch. Phys. Med. Rehabil. 86, 789–792. https://doi.org/10.1016/J.APMR.2004.11.005 (2005).Article 
PubMed 

Google Scholar 
Bhatt, T., Yang, F., Mak, M. Okay., Hui-Chan, C.W.-Y. & Pai, Y.-C. Effect of externally cued coaching on dynamic stability management in the course of the sit-to-stand job in folks with Parkinson disease. Phys. Ther. 93, 492–503. https://doi.org/10.2522/PTJ.20100423 (2013).Article 
PubMed 

Google Scholar 
Brusse, Okay. J., Zimdars, S., Zalewski, Okay. R. & Steffen, T. M. Testing purposeful efficiency in folks With Parkinson disease. Phys. Ther. 85, 134–141. https://doi.org/10.1093/PTJ/85.2.134 (2005).Article 
PubMed 

Google Scholar 
Duncan, R. P., Leddy, A. L. & Earhart, G. M. Five occasions sit to face check efficiency in Parkinson disease. Arch. Phys. Med. Rehabil. 92, 1431. https://doi.org/10.1016/J.APMR.2011.04.008 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Templeton, J. M., Poellabauer, C. & Schneider, S. Design of a Mobile-Based Neurological Assessment Tool for Aging Populations. 166–185, (Springer, 2021). https://doi.org/10.1007/978-3-030-70569-5_11.Scarpina, F. & Tagini, S. The stroop coloration and phrase check. Front. Psychol. 8, 557. https://doi.org/10.3389/fpsyg.2017.00557 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Dangare, C. S., Apte, S. S. & Student, M. E. Improved research of coronary heart disease prediction system using information mining classification strategies. Int. J. Comput. Appl. 47, 975–999 (2012).
Google Scholar 
Aydın, F. & Aslan, Z. Recognizing Parkinson’s disease gait patterns by vibes algorithm and Hilbert–Huang remodel. Eng. Sci. Technol. Int. J. 24, 112–125. https://doi.org/10.1016/J.JESTCH.2020.12.005 (2021).Article 

Google Scholar 
de Andrade, J. B. C. et al. Oxfordshire neighborhood stroke challenge classification: A proposed automated algorithm. Eur. Stroke J. 6, 160–167. https://doi.org/10.1177/23969873211012136 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Ghiasi, M. M., Zendehboudi, S. & Mohsenipour, A. A. Decision tree-based prognosis of coronary artery disease: CART mannequin. Comput. Methods Prog. Biomed. 192, 105400. https://doi.org/10.1016/J.CMPB.2020.105400 (2020).Article 

Google Scholar 
Venkatasubramaniam, A. et al. Decision timber in epidemiological analysis. Emerg. Themes Epidemiol. 14, 1–12. https://doi.org/10.1186/S12982-017-0064-4/FIGURES/6 (2017).Article 

Google Scholar 
Sharma, A., Scholar, R., Professor, A. & Gupta, M. Theoretical research of resolution tree algorithms to determine pivotal components for efficiency enchancment: A assessment theoretical research of resolution tree algorithms to determine pivotal components for efficiency enchancment: A assessment Pooja Gulati. Int. J. Comput. Appl. 141, 975–8887. https://doi.org/10.5120/ijca2016909926 (2016).Article 

Google Scholar 
Kino, S. et al. A scoping assessment on the use of machine learning in analysis on social determinants of well being: Trends and analysis prospects. SSM Popul. Health 15, 100836. https://doi.org/10.1016/J.SSMPH.2021.100836 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Sharma, S. R., Singh, B. & Kaur, M. Classification of Parkinson disease using binary Rao optimization algorithms. Expert Syst. 38, e12674. https://doi.org/10.1111/EXSY.12674 (2021).Article 

Google Scholar 
Li, Y. et al. Envelope learning view challenge clever algorithm and system view challenge classification of Parkinson’s disease by resolution tree primarily based occasion choice and ensemble learning algorithms. J. Med. Imaging Health Inform. 7, 1–9. https://doi.org/10.1166/jmihi.2017.2033 (2017).Article 

Google Scholar 
Gordon, L. Using Classification and Regression Trees (CART) in SAS® Enterprise Miner TM For Applications in Public Health. (2013).Albers, E. A. et al. Visualization codecs of patient-reported consequence measures in medical apply: A scientific assessment about preferences and interpretation accuracy. J. Patient-Rep. Outcomes 6, 1–41. https://doi.org/10.1186/S41687-022-00424-3/TABLES/3 (2022).Article 

Google Scholar 
Blake-Krebs, B. When Parkinson’s Strikes Early: Voices, Choices, Resources and Treatment, 1st ed. (HunterHouse, 2001).Ryu, J., Vero, J., Dobkin, R. D. & Torres, E. B. Dynamic digital biomarkers of motor and cognitive perform in Parkinson’s disease. J. Vis. Exp. 2019, e59827. https://doi.org/10.3791/59827 (2019).Article 

Google Scholar 
Mazzoni, P., Shabbott, B. & Cortés, J. C. Motor management abnormalities in Parkinson’s disease. Cold Spring Harbor Perspect. Med.https://doi.org/10.1101/cshperspect.a009282 (2012).Article 

Google Scholar 
Vianello, A., Chittaro, L., Burigat, S. & Budai, R. MotorMind: A cell app for the evaluation of customers’ motor efficiency in neurology. Comput. Methods Prog. Biomed. 143, 35–47. https://doi.org/10.1016/j.cmpb.2017.02.012 (2017).Article 

Google Scholar 
Maguire, Á., Martin, J., Jarke, H. & Ruggeri, Okay. Getting nearer? Differences stay in neuropsychological assessments transformed to cell gadgets. Psychol. Serv.https://doi.org/10.1037/ser0000307 (2018).Article 
PubMed 

Google Scholar 
Jacobson, N. C., Weingarden, H. & Wilhelm, S. Digital biomarkers of temper issues and symptom change. NPJ Dig. Med. 2, 1–3. https://doi.org/10.1038/s41746-019-0078-0 (2019).Article 

Google Scholar 
Pahuja, G. & Nagabhushan, T. N. A comparative research of present machine learning approaches for Parkinson’s disease detection. IETE J. Res. 67, 4–14. https://doi.org/10.1080/03772063.2018.1531730 (2021).Article 

Google Scholar 
Dijkhuis, T. B., Blaauw, F. J., van Ittersum, M. W., Velthuijsen, H. & Aiello, M. Personalized bodily exercise teaching: A machine learning strategy. Sensors. 18, 623. https://doi.org/10.3390/S18020623 (2018).ADS 
Article 
PubMed Central 

Google Scholar 
Templeton, J. M., Poellabauer, C. & Schneider, S. Towards symptom-specific intervention suggestion techniques. J. Parkinson’s Dis. 12, 1621–1631. https://doi.org/10.3233/JPD-223214 (2022).Article 

Google Scholar 

https://www.nature.com/articles/s41598-022-18015-z

Recommended For You