Atomistic and machine learning studies of solute segregation in metastable grain boundaries

Lu, P. et al. On the thermal stability and grain boundary segregation in nanocrystalline ptau alloys. Materialia 6, 100298 (2019).CAS 
Article 

Google Scholar 
Chookajorn, T., Murdoch, H. & Schuh, C. Design of steady nanocrystalline alloys. Science 337, 951–954 (2012).ADS 
CAS 
PubMed 
Article 

Google Scholar 
Darling, Ok. A., Tschopp, M., VanLeeuwen, B., Atwater, M. & Liu, Z. Mitigating grain development in binary nanocrystalline alloys by means of solute choice primarily based on thermodynamic stability maps. Comput. Mater. Sci. 84, 255–266 (2014).CAS 
Article 

Google Scholar 
Gupta, V. Ok., Yoon, D.-H., Meyer, H. M. III. & Luo, J. Thin intergranular movies and solid-state activated sintering in nickel-doped tungsten. Acta Mater. 55, 3131–3142 (2007).ADS 
CAS 
Article 

Google Scholar 
Shi, X. & Luo, J. Developing grain boundary diagrams as a supplies science device: a case examine of nickel-doped molybdenum. Phys. Rev. B 84, 014105 (2011).ADS 
Article 
CAS 

Google Scholar 
Sun, Z. et al. Reducing sizzling tearing by grain boundary segregation engineering in additive manufacturing: instance of an alxcocrfeni high-entropy alloy. Acta Mater. 204, 116505 (2021).CAS 
Article 

Google Scholar 
Mishin, Y. Solute drag and dynamic section transformations in transferring grain boundaries. Acta Mater. 179, 383–395 (2019).ADS 
CAS 
Article 

Google Scholar 
Alkayyali, M. & Abdeljawad, F. Grain boundary solute drag mannequin in common answer alloys. Phys. Rev. Lett. 127, 175503 (2021).ADS 
CAS 
PubMed 
Article 

Google Scholar 
Trelewicz, J. & Schuh, C. Grain boundary segregation and thermodynamically steady binary nanocrystalline alloys. Phys. Rev. B 79, 094112 (2009).ADS 
Article 
CAS 

Google Scholar 
Murdoch, H. & Schuh, C. Estimation of grain boundary segregation enthalpy and its function in steady nanocrystalline alloy design. J. Mater. Res. 28, 2154–2163 (2013).ADS 
CAS 
Article 

Google Scholar 
Frolov, T., Darling, Ok., Kecskes, L. & Mishin, Y. Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Mater. 60, 2158–2168 (2012).ADS 
CAS 
Article 

Google Scholar 
Abdeljawad, F. & Foiles, S. M. Stabilization of nanocrystalline alloys by way of grain boundary segregation: a diffuse interface mannequin. Acta Mater. 101, 159–171 (2015).ADS 
CAS 
Article 

Google Scholar 
Abdeljawad, F. et al. Grain boundary segregation in immiscible nanocrystalline alloys. Acta Mater. 126, 528–539 (2017).ADS 
CAS 
Article 

Google Scholar 
Wagih, M. & Schuh, C. A. Grain boundary segregation past the dilute restrict: separating the 2 contributions of website spectrality and solute interactions. Acta Mater. 199, 63–72 (2020).ADS 
CAS 
Article 

Google Scholar 
Chookajorn, T. & Schuh, C. A. Thermodynamics of steady nanocrystalline alloys: a monte carlo evaluation. Phys. Rev. B 89, 064102 (2014).ADS 
Article 
CAS 

Google Scholar 
Kazemi, A. & Yang, S. Effects of magnesium dopants on grain boundary migration in aluminum–magnesium alloys. Comput. Mater. Sci. 188, 110130 (2021).CAS 
Article 

Google Scholar 
Mendelev, M., Srolovitz, D. J., Ackland, G. J. & Han, S. Effect of Fe segregation on the migration of a non-symmetric 5 tilt grain boundary in al. J. Mater. Res. 20, 208–218 (2005).ADS 
CAS 
Article 

Google Scholar 
Barr, C. M. et al. The function of grain boundary character in solute segregation and thermal stability of nanocrystalline pt-au. Nanoscale 13, 3552–3563 (2021).CAS 
PubMed 
Article 

Google Scholar 
Frolov, T., Divinski, S., Asta, M. & Mishin, Y. Effect of interface section transformations on diffusion and segregation in high-angle grain boundaries. Phys. Rev. Lett. 110, 255502 (2013).ADS 
CAS 
PubMed 
Article 

Google Scholar 
Curry, J. F. et al. Achieving ultralow put on with steady nanocrystalline metals. Adv. Mater. 30, 1802026 (2018).Article 
CAS 

Google Scholar 
Babicheva, R. I. et al. Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys. Comput. Mater. Sci. 117, 445–454 (2016).CAS 
Article 

Google Scholar 
Lejček, P., Šob, M. & Paidar, V. Interfacial segregation and grain boundary embrittlement: an outline and essential evaluation of experimental knowledge and calculated outcomes. Prog. Mater. Sci. 87, 83–139 (2017).Article 
CAS 

Google Scholar 
Hwang, N., Park, Y., Kim, D. & Yoon, D. Y. Activated sintering of nickel-doped tungsten: method by grain boundary structural transition. Scripta Mater. 42, 421–425 (2000).CAS 
Article 

Google Scholar 
Cahn, J. W. The impurity-drag impact in grain boundary movement. Acta Metall. 10, 789–798 (1962).CAS 
Article 

Google Scholar 
Weissmüller, J. Alloy results in nanostructures. Nanostruct. Mater. 3, 261–272 (1993).Article 

Google Scholar 
Lejček, P. Grain boundary segregation in metals (Springer, New York, 2010).Book 

Google Scholar 
Goux, C. Structure des joints de grains: considérations cristallographiques et méthodes de calcul des buildings. Can. Metall. Q. 13, 9–31. https://doi.org/10.1179/cmq.1974.13.1.9 (1974).CAS 
Article 

Google Scholar 
Wolf, D. Structure-energy correlation for grain boundaries in fcc metals-I. Boundaries on the (111) and (100) planes. Acta Metall. 37, 1983–1993 (1989).CAS 
Article 

Google Scholar 
Randle, V. The measurment of grain boundary geometry (Inst. Phys. Pub., 1993).Rowenhorst, D. et al. Consistent representations of and conversions between 3d rotations. Model. Simul. Mater. Sci. Eng. 23 (2015).Han, J., Vitek, V. & Srolovitz, D. J. Grain-boundary metastability and its statistical properties. Acta Mater. 104, 259–273 (2016).CAS 
Article 

Google Scholar 
Vitek, V., Sutton, A. P. & Wang, G. J. On the multiplicity of buildings and grain boundaries. Scripta Metall. 17, 183–189 (1983).CAS 
Article 

Google Scholar 
Wang, G. J., Sutton, A. & Vitek, V. A pc simulation examine of< 001> and< 111> tilt boundaries: the multiplicity of buildings. Acta Metall. 32, 1093–1104 (1984).CAS 
Article 

Google Scholar 
Frolov, T. et al. Grain boundary phases in bcc metals. Nanoscale 10, 8253–8268 (2018).CAS 
PubMed 
Article 

Google Scholar 
Frolov, T., Zhu, Q., Oppelstrup, T., Marian, J. & Rudd, R. E. Structures and transitions in bcc tungsten grain boundaries and their function in the absorption of level defects. Acta Mater. 159, 123–134 (2018).ADS 
CAS 
Article 

Google Scholar 
Meiners, T., Frolov, T., Rudd, R. E., Dehm, G. & Liebscher, C. H. Observations of grain-boundary section transformations in an elemental steel. Nature 579, 375–378 (2020).ADS 
CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Youssef, Ok., Scattergood, R., Murty, Ok. & Koch, C. Nanocrystalline al-mg alloy with ultrahigh power and good ductility. Scripta Mater. 54, 251–256 (2006).CAS 
Article 

Google Scholar 
Pun, S. C. et al. Nanocrystalline al-mg with excessive power as a result of grain boundary doping. Mater. Sci. Eng. A 696, 400–406 (2017).CAS 
Article 

Google Scholar 
Devaraj, A. et al. Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys. Acta Mater. 165, 698–708 (2019).ADS 
CAS 
Article 

Google Scholar 
Tamura, T. et al. Fast and scalable prediction of native vitality at grain boundaries: machine-learning primarily based modeling of first-principles calculations. Model. Simul. Mater. Sci. Eng. 25, 075003 (2017).ADS 
Article 

Google Scholar 
Zhang, Y. & Xu, X. Predicting doped mgb2 superconductor essential temperature from lattice parameters utilizing gaussian course of regression. Phys. C Supercond. Appl. 573, 1353633 (2020).ADS 
CAS 
Article 

Google Scholar 
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995).ADS 
CAS 
MATH 
Article 

Google Scholar 
Stukowski, A. Visualization and evaluation of atomistic simulation knowledge with ovito-the open visualization device. Mod. Sim. Mater. Sci. Eng. 18, 015012 (2010).ADS 
Article 

Google Scholar 
Faken, D. & Jónsson, H. Systematic evaluation of native atomic construction mixed with 3d laptop graphics. Comput. Mater. Sci. 2, 279–286 (1994).CAS 
Article 

Google Scholar 
Mendelev, M., Asta, M., Rahman, M. & Hoyt, J. Development of interatomic potentials acceptable for simulation of solid-liquid interface properties in al-mg alloys. Philos. Mag. 89, 3269–3285 (2009).ADS 
CAS 
Article 

Google Scholar 
Mishin, Y. & Farkas, D. Atomistic simulation of [001] symmetrical tilt grain boundaries in nial. Philos. Mag. A 78, 29–56 (1998).ADS 
CAS 
Article 

Google Scholar 
Olmsted, D. L., Foiles, S. M. & Holm, E. A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary vitality. Acta Mater. 57, 3694–3703 (2009).ADS 
CAS 
Article 

Google Scholar 
Ratanaphan, S. et al. Grain boundary energies in body-centered cubic metals. Acta Mater. 88, 346–354 (2015).ADS 
CAS 
Article 

Google Scholar 
Tschopp, M. A., Coleman, S. P. & McDowell, D. L. Symmetric and uneven tilt grain boundary construction and vitality in cu and al (and transferability to different fcc metals). Integ. Mater. Manuf. Innov. 4, 176–189 (2015).Article 

Google Scholar 
Rittner, J. & Seidman, D. N.< 110> symmetric tilt grain-boundary buildings in fcc metals with low stacking-fault energies. Phys. Rev. B 54, 6999 (1996).ADS 
CAS 
Article 

Google Scholar 
Schneider, T. & Stoll, E. Molecular-dynamics examine of a three-dimensional one-component mannequin for distortive section transitions. Phys. Rev. B 17, 1302 (1978).ADS 
CAS 
Article 

Google Scholar 
Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an exterior bathtub. J. Chem. Phys. 81, 3684–3690 (1984).ADS 
CAS 
Article 

Google Scholar 
Zhou, F., Liao, X., Zhu, Y., Dallek, S. & Lavernia, E. Microstructural evolution throughout restoration and recrystallization of a nanocrystalline al-mg alloy ready by cryogenic ball milling. Acta Mater. 51, 2777–2791 (2003).ADS 
CAS 
Article 

Google Scholar 
Hoagland, R. G. & Kurtz, R. J. The relation between grain-boundary construction and sliding resistance. Philos. Mag. A 82, 1073–1092 (2002).ADS 
CAS 
Article 

Google Scholar 
Reddy, J. N. An introduction to continuum mechanics (Cambridge University Press, Cambridge, 2013).
Google Scholar 
Hart, G. L., Mueller, T., Toher, C. & Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 1–26 (2021).Rasmussen, C. E. & Williams, C. Ok. I. Gaussian Processes for Machine Learning (The MIT Press, Massachusetts Institute of Technology, 2006).Lei, B. et al. Bayesian optimization with adaptive surrogate fashions for automated experimental design. NPJ Comput. Mater. 7, 1–12 (2021).ADS 
Article 

Google Scholar 
Lejček, P. Characterization of grain boundary segregation in an Fe–Si alloy. Anal. Chim. Acta 297, 165–178 (1994).Article 

Google Scholar 
Xie, H. et al. Nonsymmetrical segregation of solutes in periodic misfit dislocations separated tilt grain boundaries. Nano Lett. 21, 2870–2875 (2021).ADS 
CAS 
PubMed 
Article 

Google Scholar 
Daw, M. S. & Baskes, M. I. Embedded-atom technique: derivation and software to impurities, surfaces, and different defects in metals. Phys. Rev. B 29, 6443 (1984).ADS 
CAS 
Article 

Google Scholar 
Finnis, M. & Sinclair, J. A easy empirical n-body potential for transition metals. Philos. Mag. A 50, 45–55 (1984).ADS 
CAS 
Article 

Google Scholar 
Huber, L., Hadian, R., Grabowski, B. & Neugebauer, J. A machine learning method to mannequin solute grain boundary segregation. NPJ Comput. Mater. 4, 1–8 (2018).Article 

Google Scholar 
Nishiyama, T., Seko, A. & Tanaka, I. Application of machine learning potentials to foretell grain boundary properties in fcc elemental metals. Phys. Rev. Mater. 4, 123607 (2020).CAS 
Article 

Google Scholar 
Wagih, M., Larsen, P. M. & Schuh, C. A. Learning grain boundary segregation vitality spectra in polycrystals. Nat. Commun. 11, 1–9 (2020).Article 
CAS 

Google Scholar 

https://www.nature.com/articles/s41598-022-10566-5

Recommended For You