Jumper, J. et al. Highly correct protein construction prediction with AlphaFold. Nature 596, 583â589 (2021).ArticleÂ
Google ScholarÂ
Berman, H., Henrick, Okay. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 10, 980 (2003).ArticleÂ
Google ScholarÂ
Mohs, R. C. & Greig, N. H. Drug discovery and growth: function of primary organic analysis. Alzheimerâs Dement. Transl. Res. Clin. Interv. 3, 651â657 (2017).ArticleÂ
Google ScholarÂ
Sliwoski, G., Kothiwale, S., Meiler, J. & Lowe, E. W. Computational strategies in drug discovery. Pharm. Rev. 66, 334â395 (2014).ArticleÂ
Google ScholarÂ
Thiel, W. Semiempirical quantum-chemical strategies. WIREs Comput. Mol. Sci. 4, 145â157 (2014).ArticleÂ
Google ScholarÂ
Hollingsworth, S. A. & Dror, R. O. Molecular dynamics simulation for all. Neuron 99, 1129â1143 (2018).ArticleÂ
Google ScholarÂ
Siebenmorgen, T. & Zacharias, M. Computational prediction of proteinâprotein binding affinities. WIREs Comput. Mol. Sci. 10, e1448 (2020).ArticleÂ
Google ScholarÂ
Trott, O. & Olson, A. J. AutoDock Vina: enhancing the pace and accuracy of docking with a brand new scoring operate, environment friendly optimization, and multithreading. J. Comput. Chem. 31, 455â461 (2010).ArticleÂ
Google ScholarÂ
Kmiecik, S. et al. Coarse-grained protein fashions and their functions. Chem. Rev. 116, 7898â7936 (2016).ArticleÂ
Google ScholarÂ
Spicher, S. & Grimme, S. Robust atomistic modeling of supplies, organometallic, and biochemical programs. Angew. Chem. Int. Ed. 59, 15665â15673 (2020).ArticleÂ
Google ScholarÂ
Vandenbrande, S., Waroquier, M., Speybroeck, V. V. & Verstraelen, T. The monomer electron density pressure subject (MEDFF): a bodily impressed mannequin for noncovalent interactions. J. Chem. Theory Comput. 13, 161â179 (2017).ArticleÂ
Google ScholarÂ
Wang, J. & Dokholyan, N. V. Yuel: enhancing the generalizability of structure-free compoundâprotein interplay prediction. J. Chem. Inf. Model. 62, 463â471 (2022).ArticleÂ
Google ScholarÂ
Ponder, J. W. et al. Current standing of the AMOEBA polarizable pressure subject. J. Phys. Chem. B 114, 2549â2564 (2010).ArticleÂ
Google ScholarÂ
Chen, B. et al. Automated discovery of basic variables hidden in experimental information. Nat. Comput Sci. 2, 433â442 (2022).ArticleÂ
Google ScholarÂ
Durrant, J. D. & McCammon, J. A. NNScore: a neural-network-based scoring operate for the characterization of proteinâligand complexes. J. Chem. Inf. Model. 50, 1865â1871 (2010).ArticleÂ
Google ScholarÂ
Wang, X., Terashi, G., Christoffer, C. W., Zhu, M. & Kihara, D. Protein docking mannequin analysis by 3D deep convolutional neural networks. Bioinformatics 36, 2113â2118 (2020).ArticleÂ
Google ScholarÂ
Wang, N.-N. et al. ADME properties analysis in drug discovery: prediction of Caco-2 cell permeability utilizing a mix of NSGA-II and boosting. J. Chem. Inf. Model. 56, 763â773 (2016).ArticleÂ
Google ScholarÂ
Ishida, S., Terayama, Okay., Kojima, R., Takasu, Okay. & Okuno, Y. AI-driven artificial route design integrated with retrosynthesis data. J. Chem. Inf. Model. 62, 1357â1367 (2022).ArticleÂ
Google ScholarÂ
Karpov, P., Godin, G. & Tetko, I. V. A transformer mannequin for retrosynthesis. In Artificial Neural Networks and Machine LearningâICANN 2019: Workshop and Special Sessions (eds Tetko, I. V. et al.) 817â830 (Springer, 2019).Ãztürk, H., Ãzgür, A. & Ozkirimli, E. DeepDTA: deep drugâgoal binding affinity prediction. Bioinformatics 34, i821âi829 (2018).ArticleÂ
Google ScholarÂ
Karimi, M., Wu, D., Wang, Z. & Shen, Y. DeepAffinity: interpretable deep learning of compoundâprotein affinity by means of unified recurrent and convolutional neural networks. Bioinformatics 35, 3329â3338 (2019).ArticleÂ
Google ScholarÂ
Hassan-Harrirou, H., Zhang, C. & Lemmin, T. RosENet: enhancing binding affinity prediction by leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks. J. Chem. Inf. Model. 60, 2791â2802 (2020).ArticleÂ
Google ScholarÂ
Feinberg, E. N. et al. PotentialNet for molecular property prediction. ACS Cent. Sci. 4, 1520â1530 (2018).ArticleÂ
Google ScholarÂ
Li, Y., Rezaei, M. A., Li, C. & Li, X. DeepAtom: a framework for proteinâligand binding affinity prediction. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 303â310 (IEEE, 2019).Wang, R., Fang, X., Lu, Y., Yang, C.-Y. & Wang, S. The PDBbind database: methodologies and updates. J. Med. Chem. 48, 4111â4119 (2005).ArticleÂ
Google ScholarÂ
Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. Okay. BindingDB: a web-accessible database of experimentally decided proteinâligand binding affinities. Nucleic Acids Res. 35, D198âD201 (2007).ArticleÂ
Google ScholarÂ
Hu, L., Benson, M. L., Smith, R. D., Lerner, M. G. & Carlson, H. A. Binding MOAD (Mother Of All Databases). Proteins Struct. Funct. Bioinform. 60, 333â340 (2005).ArticleÂ
Google ScholarÂ
Friedrich, N.-O., Simsir, M. & Kirchmair, J. How numerous are the protein-bound conformations of small-molecule medication and cofactors? Front. Chem. 6, 68 (2018).ArticleÂ
Google ScholarÂ
Korlepara, D. B. et al. PLAS-5k: dataset of proteinâligand affinities from molecular dynamics for machine learning functions. Sci. Data 9, 548 (2022).ArticleÂ
Google ScholarÂ
Korlepara, D. B. et al. PLAS-20k: prolonged dataset of proteinâligand affinities from MD simulations for machine learning functions. Sci. Data 11, 180 (2024).ArticleÂ
Google ScholarÂ
Yang, J., Shen, C. & Huang, N. Predicting or pretending: synthetic intelligence for proteinâligand interactions lack of sufficiently massive and unbiased datasets. Front. Pharmacol. 11, 69 (2020).ArticleÂ
Google ScholarÂ
Volkov, M. et al. On the frustration to foretell binding affinities from proteinâligand buildings with deep neural networks. J. Med. Chem. 65, 7946â7958 (2022).ArticleÂ
Google ScholarÂ
Vajda, S., Beglov, D., Wakefield, A. E., Egbert, M. & Whitty, A. Cryptic binding websites on proteins: definition, detection, and druggability. Curr. Opin. Chem. Biol. 44, 1â8 (2018).ArticleÂ
Google ScholarÂ
Zeng, L. et al. Selective small molecules blocking HIV-1 Tat and coactivator PCAF affiliation. J. Am. Chem. Soc. 127, 2376â2377 (2005).ArticleÂ
Google ScholarÂ
Johnson, R. D. III (ed). Computational Chemistry Comparison and Benchmark Database Standard Reference Database Number 101 Release 22 (NIST, accessed 12 Jul 2022); http://cccbdb.nist.gov/Bista, M. et al. Transient protein states in designing inhibitors of the MDM2âp53 interplay. Structure 21, 2143â2151 (2013).ArticleÂ
Google ScholarÂ
Xie, M. et al. Structural foundation of inhibition of ERαâcoactivator interplay by high-affinity N-terminus isoaspartic acid tethered helical peptides. J. Med. Chem. 60, 8731â8740 (2017).ArticleÂ
Google ScholarÂ
Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, environment friendly era of high-quality atomic prices. AM1-BCC mannequin: II. Parameterization and validation. J. Comput. Chem. 23, 1623â1641 (2002).ArticleÂ
Google ScholarÂ
Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J. & Jorgensen, W. L. 1.14*CM1A-LBCC: localized bond-charge corrected CM1A prices for condensed-phase simulations. J. Phys. Chem. B 121, 3864â3870 (2017).ArticleÂ
Google ScholarÂ
Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom pressure subject on conformational energetics and properties of natural liquids. J. Am. Chem. Soc. 118, 11225â11236 (1996).ArticleÂ
Google ScholarÂ
Storer, J. W., Giesen, D. J., Cramer, C. J. & Truhlar, D. G. Class IV cost fashions: a brand new semiempirical strategy in quantum chemistry. J. Comput. Aided Mol. Des. 9, 87â110 (1995).ArticleÂ
Google ScholarÂ
Li, J., Zhu, T., Cramer, C. J. & Truhlar, D. G. New class IV cost mannequin for extracting correct partial prices from wave features. J. Phys. Chem. A 102, 1820â1831 (1998).ArticleÂ
Google ScholarÂ
Thompson, J. D., Cramer, C. J. & Truhlar, D. G. Parameterization of cost mannequin 3 for AM1, PM3, BLYP, and B3LYP. J. Comput. Chem. 24, 1291â1304 (2003).ArticleÂ
Google ScholarÂ
Grimme, S. & Bannwarth, C. Ultra-fast computation of digital spectra for massive programs by tight-binding based mostly simplified TammâDancoff approximation (sTDA-xTB). J. Chem. Phys. 145, 054103 (2016).ArticleÂ
Google ScholarÂ
Wang, E. et al. End-point binding free power calculation with MM/PBSA and MM/GBSA: methods and functions in drug design. Chem. Rev. 119, 9478â9508 (2019).ArticleÂ
Google ScholarÂ
Sun, Z., Liu, Q., Qu, G., Feng, Y. & Reetz, M. T. Utility of B components in protein science: decoding rigidity, flexibility, and inner movement and engineering thermostability. Chem. Rev. 119, 1626â1665 (2019).ArticleÂ
Google ScholarÂ
Guilligay, D. et al. The structural foundation for cap binding by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 15, 500â506 (2008).ArticleÂ
Google ScholarÂ
Rayne, S. & Forest, Okay. Benchmarking semiempirical, HartreeâFock, DFT, and MP2 strategies in opposition to the ionization energies and electron affinities of short- by means of long-chain [n]acenes and [n]phenacenes. Can. J. Chem. 94, 251â258 (2016).ArticleÂ
Google ScholarÂ
Zhan, C.-G., Nichols, J. A. & Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation power: molecular properties from density practical concept orbital energies. J. Phys. Chem. A 107, 4184â4195 (2003).ArticleÂ
Google ScholarÂ
Lange, G. et al. Requirements for particular binding of low affinity inhibitor fragments to the SH2 area of pp60Src are similar to these for excessive affinity binding of full size inhibitors. J. Med. Chem. 46, 5184â5195 (2003).ArticleÂ
Google ScholarÂ
Ãster, L., Tapani, S., Xue, Y. & Käck, H. Successful era of structural data for fragment-based drug discovery. Drug Discov. Today 20, 1104â1111 (2015).ArticleÂ
Google ScholarÂ
Heinzlmeir, S. et al. Chemoproteomics-aided medicinal chemistry for the discovery of EPHA2 inhibitors. ChemMedChem 12, 999â1011 (2017).ArticleÂ
Google ScholarÂ
Gaieb, Z. et al. D3R Grand Challenge 2: blind prediction of proteinâligand poses, affinity rankings, and relative binding free energies. J. Comput. Aided Mol. Des. 32, 1â20 (2018).ArticleÂ
Google ScholarÂ
Whitehouse, A. J. et al. Development of inhibitors in opposition to Mycobacterium abscessus tRNA (m1G37) methyltransferase (TrmD) utilizing fragment-based approaches. J. Med. Chem. 62, 7210â7232 (2019).ArticleÂ
Google ScholarÂ
Menezes, F. & Popowicz, G. M. ULYSSES: an environment friendly and straightforward to make use of semiempirical library for C. J. Chem. Inf. Model. 62, 3685â3694 (2022).ArticleÂ
Google ScholarÂ
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTBâan correct and broadly parametrized self-consistent tight-binding quantum chemical technique with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652â1671 (2019).ArticleÂ
Google ScholarÂ
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. Development and use of quantum mechanical molecular fashions. 76. AM1: a brand new common goal quantum mechanical molecular mannequin. J. Am. Chem. Soc. 107, 3902â3909 (1985).ArticleÂ
Google ScholarÂ
Stewart, J. J. P. Application of the PM6 technique to modeling proteins. J. Mol. Model. 15, 765â805 (2009).ArticleÂ
Google ScholarÂ
Sigalov, G., Fenley, A. & Onufriev, A. Analytical electrostatics for biomolecules: past the generalized Born approximation. J. Chem. Phys. 124, 124902 (2006).ArticleÂ
Google ScholarÂ
Christensen, A. S., KubaÅ, T., Cui, Q. & Elstner, M. Semiempirical quantum mechanical strategies for noncovalent interactions for chemical and biochemical functions. Chem. Rev. 116, 5301â5337 (2016).ArticleÂ
Google ScholarÂ
Dixon, S. L. & Merz, Okay. M. Fast, correct semiempirical molecular orbital calculations for macromolecules. J. Chem. Phys. 107, 879â893 (1997).ArticleÂ
Google ScholarÂ
OâBoyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).ArticleÂ
Google ScholarÂ
Caldeweyher, E. et al. A usually relevant atomic-charge dependent London dispersion correction. J. Chem. Phys. 150, 154122 (2019).ArticleÂ
Google ScholarÂ
Hanwell, M. D. et al. Avogadro: a sophisticated semantic chemical editor, visualization, and evaluation platform. J. Cheminform. 4, 17 (2012).ArticleÂ
Google ScholarÂ
Case, D. A. et al. Amber 2021 (Univ. of California, San Francisco, 2021).Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a common Amber pressure subject. J. Comput. Chem. 25, 1157â1174 (2004).ArticleÂ
Google ScholarÂ
Maier, J. A. et al. ff14SB: enhancing the accuracy of protein facet chain and spine parameters from ff99SB. J. Chem. Theory Comput. 11, 3696â3713 (2015).ArticleÂ
Google ScholarÂ
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of easy potential features for simulating liquid water. J. Chem. Phys. 79, 926â935 (1983).ArticleÂ
Google ScholarÂ
Townshend, R. J. L. et al. ATOM3D: duties on molecules in three dimensions. Preprint at https://doi.org/10.48550/arXiv.2012.04035 (2022).Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. Preprint at https://doi.org/10.48550/arXiv.1609.02907 (2017).Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: an internet server for clustering and evaluating organic sequences. Bioinformatics 26, 680â682 (2010).ArticleÂ
Google ScholarÂ
Forli, S. et al. Computational proteinâligand docking and digital drug screening with the AutoDock suite. Nat. Protoc. 11, 905â919 (2016).ArticleÂ
Google ScholarÂ
Zhao, Y., Stoffler, D. & Sanner, M. Hierarchical and multi-resolution illustration of protein flexibility. Bioinformatics 22, 2768â2774 (2006).ArticleÂ
Google ScholarÂ
Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J. & Sanner, M. F. AutoDockFR: advances in proteinâligand docking with explicitly specified binding website flexibility. PLoS Comput. Biol. 11, e1004586 (2015).ArticleÂ
Google ScholarÂ
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based mostly on UNIX pipes. J. Biomol. NMR 6, 277â293 (1995).ArticleÂ
Google ScholarÂ
Johnson, B. A. & Blevins, R. A. NMR View: a pc program for the visualization and evaluation of NMR information. J. Biomol. NMR 4, 603â614 (1994).ArticleÂ
Google ScholarÂ
Siebenmorgen, T. et al. MISATOâmachine learning dataset for structure-based drug discovery. Zenodo https://doi.org/10.5281/zenodo.7711953 (2023).t7morgen/misato-dataset: launch for publication. Zenodo https://doi.org/10.5281/zenodo.10926008 (2024).
https://www.nature.com/articles/s43588-024-00627-2