Efficient learning of accurate surrogates for simulations of complex systems

Barros, V. et al. (eds) Climate Change 2014 Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).Wigley, P. et al. Fast machine-learning on-line optimization of ultra-cold-atom experiments. Sci. Rep. 6, 25890 (2016).Article 

Google Scholar 
Scheinker, A. & Gessner, S. Adaptive technique for electron bunch profile prediction. Phys. Rev. Accel. Beams 18, 102801 (2015).Article 

Google Scholar 
Noack, M. et al. A kriging-based strategy to autonomous experimentation with functions to x-ray scattering. Sci. Rep. 9, 11809 (2019).Article 

Google Scholar 
Coveney, P. V., Boon, J. P. & Succi, S. Bridging the gaps on the physics–chemistry–biology interface. Philos. Trans. R. Soc. Lond. Ser. A 374, 20160335 (2016).
Google Scholar 
Hu, S. X. et al. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion functions. Phys. Rev. E 89, 043105 (2014).Article 

Google Scholar 
Stanton, L. G., Glosli, J. N. & Murillo, M. S. Multiscale molecular dynamics mannequin for heterogeneous charged systems. Phys. Rev. X 8, 021044 (2018).
Google Scholar 
Brown, E. W., Clark, B. Okay., DuBois, J. L. & Ceperley, D. M. Path-integral monte carlo simulation of the nice and cozy dense homogeneous electron fuel. Phys. Rev. Lett. 110, 146405 (2013).Article 

Google Scholar 
Schmidt, J., Marques, M., Botti, S. & Marques, M. Recent advances and functions of machine learning in solid-state supplies science. NPJ Comput. Mater. 5, 83 (2019).Article 

Google Scholar 
Liu, Y., Zhao, T., Ju, W. & Shi, S. Materials discovery and design utilizing machine learning. J. Materiomics 3, 159–177 (2017).Article 

Google Scholar 
Lubbers, N. et al. Modeling and scale-bridging utilizing machine learning: nanoconfinement results in porous media. Sci. Rep. 10, 13312 (2020).Article 

Google Scholar 
Diaw, A. et al. Multiscale simulation of plasma flows utilizing energetic learning. Phys. Rev. E 102, 023310 (2020).Article 

Google Scholar 
Roehm, D. et al. Distributed database kriging for adaptive sampling (D2 KAS). Comput. Phys. Commun. 192, 138–147 (2015).Article 

Google Scholar 
Coulomb, J.-L., Kobetski, A., Caldora Costa, M., Maréchal, Y. & Jonsson, U. Comparison of radial foundation operate approximation strategies. COMPEL – Int. J. Comput. Math. Electric. Electron. Eng. 22, 616–629 (2003).Article 

Google Scholar 
Wu, Y., Wang, H., Zhang, B. & Du, Okay.-L. Using radial foundation operate networks for operate approximation and classification. ISRN Appl. Math. 2012, 324194 (2012).Article 
MathSciNet 

Google Scholar 
Park, J. & Sandberg, I. W. Universal approximation utilizing radial-basis-function networks. Neural Comput. 3, 246–257 (1991).Article 

Google Scholar 
McKerns, M., Hung, P. & Aivazis, M. mystic: highly-constrained non-convex optimization and UQ. PyPI http://pypi.python.org/pypi/mystic (2009).McKerns, M., Strand, L., Sullivan, T. J., Fang, A. & Aivazis, M. Building a framework for predictive science. In Proc. tenth Python in Science Conference (eds van der Walt, S. & Millman, J.) 67–78 (SciPy, 2011).Rastrigin, L. A. Systems of External Control (Mir, 1974) [in Russian].Rosenbrock, H. An automated technique for discovering the best or least worth of a operate. Comput. J. 3, 175–184 (1960).Article 
MathSciNet 

Google Scholar 
Dixon, L. & Szego, G. in Towards Global Optimisation 2 (eds Dixon, L. C. & Szegö, G. P.) 1–15 (North-Holland, 1978).Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, 1992).Easom, E. A Survey of Global Optimization Techniques. M. Eng. Thesis, Univ. of Louisville (1990).Lonardoni, D., Tews, I., Gandolfi, S. & Carlson, J. Nuclear and neutron-star matter from native chiral interactions. Phys. Rev. Res. 2, 022033 (2020).Article 

Google Scholar 
Annala, E., Gorda, T., Kurkela, A., Nättilä, J. & Vuorinen, A. Evidence for quark-matter cores in huge neutron stars. Nat. Phys. 16, 907–910 (2020).Article 

Google Scholar 
Baym, G. et al. From hadrons to quarks in neutron stars: a assessment. Rep. Prog. Phys. 81, 056902 (2018).Article 
MathSciNet 

Google Scholar 
Adam, J. et al. Nonmonotonic power dependence of net-proton quantity fluctuations. Phys. Rev. Lett. 126, 092301 (2021).Article 

Google Scholar 
Busza, W., Rajagopal, Okay. & van der Schee, W. Heavy ion collisions: the large image and the large questions. Annu. Rev. Nucl. Part. Sci. 68, 339–376 (2018).Article 

Google Scholar 
Braun-Munzinger, P., Koch, V., Schäfer, T. & Stachel, J. Properties of sizzling and dense matter from relativistic heavy ion collisions. Phys. Rep. 621, 76–126 (2016).Article 
MathSciNet 

Google Scholar 
Raaijmakers, G. et al. Constraints on the dense matter equation of state and neutron star properties from nicer’s mass-radius estimate of psr j0740+6620 and multimessenger observations. Astrophys. J. Lett. 918, L29 (2021).Article 

Google Scholar 
Capano, C. D. et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear idea. Nat. Astron. 4, 625–632 (2020).Article 

Google Scholar 
Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble fixed. Science 370, 1450–1453 (2020).Article 
MathSciNet 

Google Scholar 
Riley, T. E. et al. A nicer view of psr j0030+0451: millisecond pulsar parameter estimation. Astrophys. J. 887, L21 (2019).Article 

Google Scholar 
Miller, M. C. et al. Psr j0030+0451 mass and radius from nicer information and implications for the properties of neutron star matter. Astrophys. J. 887, L24 (2019).Article 

Google Scholar 
Dexheimer, V. Tabulated neutron star equations of state modelled inside the chiral imply subject mannequin. Publ. Astron. Soc. Aust. https://doi.org/10.1017/pasa.2017.61 (2017).Abbott, B. et al. Gw170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).Article 

Google Scholar 
Typel, S., Oertel, M. & Klähn, T. CompOSE CompStar on-line supernova equations of state harmonising the live performance of nuclear physics and astrophysics compose.obspm.fr. Phys. Part. Nucl. 46, 633–664 (2015).Article 

Google Scholar 
Schneider, A. S., Constantinou, C., Muccioli, B. & Prakash, M. Akmal–Pandharipande–Ravenhall equation of state for simulations of supernovae, neutron stars and binary mergers. Phys. Rev. C 100, 025803 (2019).Article 

Google Scholar 
Raithel, C. A., Özel, F. & Psaltis, D. Finite-temperature extension for chilly neutron star equations of state. Astrophys. J. 875, 12 (2019).Article 

Google Scholar 
Glendenning, N. Okay. Compact Stars: Nuclear Physics, Particle Physics and General Relativity (Springer, 1997).Hempel, M., Pagliara, G. & Schaffner-Bielich, J. Conditions for section equilibrium in supernovae, protoneutron and neutron stars. Phys. Rev. D 80, 125014 (2009).Article 

Google Scholar 
Fischer, T. et al. Core-collapse supernova explosions triggered by a quark-hadron section transition throughout the early post-bounce section. Astrophys. J. Suppl. Ser. 194, 39 (2011).Article 

Google Scholar 
McLerran, L. & Reddy, S. Quarkyonic matter and neutron stars. Phys. Rev. Lett. 122, 122701 (2019).Article 

Google Scholar 
Chodos, A., Jaffe, R. L., Johnson, Okay., Thorn, C. B. & Weisskopf, V. F. New prolonged mannequin of hadrons. Phys. Rev. D 9, 3471–3495 (1974).Article 
MathSciNet 

Google Scholar 
Schertler, Okay., Greiner, C., Schaffner-Bielich, J. & Thoma, M. H. Quark phases in neutron stars and a 3rd household of compact stars as signature for section transitions. Nucl. Phys. A 677, 463–490 (2000).Article 

Google Scholar 
Rocha, H. On the choice of essentially the most enough radial foundation operate. Appl. Math. Model. 33, 1573–1583 (2009).Article 

Google Scholar 
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. in Parallel Distributed Processing: Explorations within the Microstructure of Cognition (eds Rumelhart, D. E., McClelland, J. L. & the PDP Research Group) (MIT Press, 1987).Schaback, R. & Wendland, H. Adaptive grasping strategies for approximate answer of massive RBF systems. Numer. Algorithms 24, 239–254 (2000).Article 
MathSciNet 

Google Scholar 
Dorvlo, A. S., Jervase, J. A. & Al-Lawati, A. Solar radiation estimation utilizing synthetic neural networks. Appl. Energy 71, 307–319 (2002).Article 

Google Scholar 
Diaw, A., McKerns, M., Sagert, I., Stanton, L. G. & Murillo, M. S. Directed sampling datasets. Zenodo https://doi.org/10.5281/zenodo.10908462 (2024).Diaw, A., McKerns, M., Sagert, I., Stanton, L. G. & Murillo, M. S. Efficient learning of accurate surrogates for simulations of complex systems. Code Ocean https://doi.org/10.24433/CO.1152070.v1 (2024).

https://www.nature.com/articles/s42256-024-00839-1

Recommended For You