Barros, V. et al. (eds) Climate Change 2014 Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).Wigley, P. et al. Fast machine-learning on-line optimization of ultra-cold-atom experiments. Sci. Rep. 6, 25890 (2016).ArticleÂ
Google ScholarÂ
Scheinker, A. & Gessner, S. Adaptive technique for electron bunch profile prediction. Phys. Rev. Accel. Beams 18, 102801 (2015).ArticleÂ
Google ScholarÂ
Noack, M. et al. A kriging-based strategy to autonomous experimentation with functions to x-ray scattering. Sci. Rep. 9, 11809 (2019).ArticleÂ
Google ScholarÂ
Coveney, P. V., Boon, J. P. & Succi, S. Bridging the gaps on the physicsâchemistryâbiology interface. Philos. Trans. R. Soc. Lond. Ser. A 374, 20160335 (2016).
Google ScholarÂ
Hu, S. X. et al. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion functions. Phys. Rev. E 89, 043105 (2014).ArticleÂ
Google ScholarÂ
Stanton, L. G., Glosli, J. N. & Murillo, M. S. Multiscale molecular dynamics mannequin for heterogeneous charged systems. Phys. Rev. X 8, 021044 (2018).
Google ScholarÂ
Brown, E. W., Clark, B. Okay., DuBois, J. L. & Ceperley, D. M. Path-integral monte carlo simulation of the nice and cozy dense homogeneous electron fuel. Phys. Rev. Lett. 110, 146405 (2013).ArticleÂ
Google ScholarÂ
Schmidt, J., Marques, M., Botti, S. & Marques, M. Recent advances and functions of machine learning in solid-state supplies science. NPJ Comput. Mater. 5, 83 (2019).ArticleÂ
Google ScholarÂ
Liu, Y., Zhao, T., Ju, W. & Shi, S. Materials discovery and design utilizing machine learning. J. Materiomics 3, 159â177 (2017).ArticleÂ
Google ScholarÂ
Lubbers, N. et al. Modeling and scale-bridging utilizing machine learning: nanoconfinement results in porous media. Sci. Rep. 10, 13312 (2020).ArticleÂ
Google ScholarÂ
Diaw, A. et al. Multiscale simulation of plasma flows utilizing energetic learning. Phys. Rev. E 102, 023310 (2020).ArticleÂ
Google ScholarÂ
Roehm, D. et al. Distributed database kriging for adaptive sampling (D2 KAS). Comput. Phys. Commun. 192, 138â147 (2015).ArticleÂ
Google ScholarÂ
Coulomb, J.-L., Kobetski, A., Caldora Costa, M., Maréchal, Y. & Jonsson, U. Comparison of radial foundation operate approximation strategies. COMPEL – Int. J. Comput. Math. Electric. Electron. Eng. 22, 616â629 (2003).ArticleÂ
Google ScholarÂ
Wu, Y., Wang, H., Zhang, B. & Du, Okay.-L. Using radial foundation operate networks for operate approximation and classification. ISRN Appl. Math. 2012, 324194 (2012).ArticleÂ
MathSciNetÂ
Google ScholarÂ
Park, J. & Sandberg, I. W. Universal approximation utilizing radial-basis-function networks. Neural Comput. 3, 246â257 (1991).ArticleÂ
Google ScholarÂ
McKerns, M., Hung, P. & Aivazis, M. mystic: highly-constrained non-convex optimization and UQ. PyPI http://pypi.python.org/pypi/mystic (2009).McKerns, M., Strand, L., Sullivan, T. J., Fang, A. & Aivazis, M. Building a framework for predictive science. In Proc. tenth Python in Science Conference (eds van der Walt, S. & Millman, J.) 67â78 (SciPy, 2011).Rastrigin, L. A. Systems of External Control (Mir, 1974) [in Russian].Rosenbrock, H. An automated technique for discovering the best or least worth of a operate. Comput. J. 3, 175â184 (1960).ArticleÂ
MathSciNetÂ
Google ScholarÂ
Dixon, L. & Szego, G. in Towards Global Optimisation 2 (eds Dixon, L. C. & Szegö, G. P.) 1â15 (North-Holland, 1978).Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, 1992).Easom, E. A Survey of Global Optimization Techniques. M. Eng. Thesis, Univ. of Louisville (1990).Lonardoni, D., Tews, I., Gandolfi, S. & Carlson, J. Nuclear and neutron-star matter from native chiral interactions. Phys. Rev. Res. 2, 022033 (2020).ArticleÂ
Google ScholarÂ
Annala, E., Gorda, T., Kurkela, A., Nättilä, J. & Vuorinen, A. Evidence for quark-matter cores in huge neutron stars. Nat. Phys. 16, 907â910 (2020).ArticleÂ
Google ScholarÂ
Baym, G. et al. From hadrons to quarks in neutron stars: a assessment. Rep. Prog. Phys. 81, 056902 (2018).ArticleÂ
MathSciNetÂ
Google ScholarÂ
Adam, J. et al. Nonmonotonic power dependence of net-proton quantity fluctuations. Phys. Rev. Lett. 126, 092301 (2021).ArticleÂ
Google ScholarÂ
Busza, W., Rajagopal, Okay. & van der Schee, W. Heavy ion collisions: the large image and the large questions. Annu. Rev. Nucl. Part. Sci. 68, 339â376 (2018).ArticleÂ
Google ScholarÂ
Braun-Munzinger, P., Koch, V., Schäfer, T. & Stachel, J. Properties of sizzling and dense matter from relativistic heavy ion collisions. Phys. Rep. 621, 76â126 (2016).ArticleÂ
MathSciNetÂ
Google ScholarÂ
Raaijmakers, G. et al. Constraints on the dense matter equation of state and neutron star properties from nicerâs mass-radius estimate of psr j0740+6620 and multimessenger observations. Astrophys. J. Lett. 918, L29 (2021).ArticleÂ
Google ScholarÂ
Capano, C. D. et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear idea. Nat. Astron. 4, 625â632 (2020).ArticleÂ
Google ScholarÂ
Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble fixed. Science 370, 1450â1453 (2020).ArticleÂ
MathSciNetÂ
Google ScholarÂ
Riley, T. E. et al. A nicer view of psr j0030+0451: millisecond pulsar parameter estimation. Astrophys. J. 887, L21 (2019).ArticleÂ
Google ScholarÂ
Miller, M. C. et al. Psr j0030+0451 mass and radius from nicer information and implications for the properties of neutron star matter. Astrophys. J. 887, L24 (2019).ArticleÂ
Google ScholarÂ
Dexheimer, V. Tabulated neutron star equations of state modelled inside the chiral imply subject mannequin. Publ. Astron. Soc. Aust. https://doi.org/10.1017/pasa.2017.61 (2017).Abbott, B. et al. Gw170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).ArticleÂ
Google ScholarÂ
Typel, S., Oertel, M. & Klähn, T. CompOSE CompStar on-line supernova equations of state harmonising the live performance of nuclear physics and astrophysics compose.obspm.fr. Phys. Part. Nucl. 46, 633â664 (2015).ArticleÂ
Google ScholarÂ
Schneider, A. S., Constantinou, C., Muccioli, B. & Prakash, M. AkmalâPandharipandeâRavenhall equation of state for simulations of supernovae, neutron stars and binary mergers. Phys. Rev. C 100, 025803 (2019).ArticleÂ
Google ScholarÂ
Raithel, C. A., Ãzel, F. & Psaltis, D. Finite-temperature extension for chilly neutron star equations of state. Astrophys. J. 875, 12 (2019).ArticleÂ
Google ScholarÂ
Glendenning, N. Okay. Compact Stars: Nuclear Physics, Particle Physics and General Relativity (Springer, 1997).Hempel, M., Pagliara, G. & Schaffner-Bielich, J. Conditions for section equilibrium in supernovae, protoneutron and neutron stars. Phys. Rev. D 80, 125014 (2009).ArticleÂ
Google ScholarÂ
Fischer, T. et al. Core-collapse supernova explosions triggered by a quark-hadron section transition throughout the early post-bounce section. Astrophys. J. Suppl. Ser. 194, 39 (2011).ArticleÂ
Google ScholarÂ
McLerran, L. & Reddy, S. Quarkyonic matter and neutron stars. Phys. Rev. Lett. 122, 122701 (2019).ArticleÂ
Google ScholarÂ
Chodos, A., Jaffe, R. L., Johnson, Okay., Thorn, C. B. & Weisskopf, V. F. New prolonged mannequin of hadrons. Phys. Rev. D 9, 3471â3495 (1974).ArticleÂ
MathSciNetÂ
Google ScholarÂ
Schertler, Okay., Greiner, C., Schaffner-Bielich, J. & Thoma, M. H. Quark phases in neutron stars and a 3rd household of compact stars as signature for section transitions. Nucl. Phys. A 677, 463â490 (2000).ArticleÂ
Google ScholarÂ
Rocha, H. On the choice of essentially the most enough radial foundation operate. Appl. Math. Model. 33, 1573â1583 (2009).ArticleÂ
Google ScholarÂ
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. in Parallel Distributed Processing: Explorations within the Microstructure of Cognition (eds Rumelhart, D. E., McClelland, J. L. & the PDP Research Group) (MIT Press, 1987).Schaback, R. & Wendland, H. Adaptive grasping strategies for approximate answer of massive RBF systems. Numer. Algorithms 24, 239â254 (2000).ArticleÂ
MathSciNetÂ
Google ScholarÂ
Dorvlo, A. S., Jervase, J. A. & Al-Lawati, A. Solar radiation estimation utilizing synthetic neural networks. Appl. Energy 71, 307â319 (2002).ArticleÂ
Google ScholarÂ
Diaw, A., McKerns, M., Sagert, I., Stanton, L. G. & Murillo, M. S. Directed sampling datasets. Zenodo https://doi.org/10.5281/zenodo.10908462 (2024).Diaw, A., McKerns, M., Sagert, I., Stanton, L. G. & Murillo, M. S. Efficient learning of accurate surrogates for simulations of complex systems. Code Ocean https://doi.org/10.24433/CO.1152070.v1 (2024).
https://www.nature.com/articles/s42256-024-00839-1