A double machine learning model for measuring the impact of the Made in China 2025 strategy on green economic growth

Cheng, Ok. & Liu, S. Does urbanization promote the urban–rural equalization of primary public companies? Evidence from prefectural cities in China. Appl. Econ. 56(29), 3445–3459. https://doi.org/10.1080/00036846.2023.2206625 (2023).Article 

Google Scholar 
Yin, X. & Xu, Z. An empirical evaluation of the coupling and coordinative improvement of China’s green finance and economic growth. Resour. Policy 75, 102476. https://doi.org/10.1016/j.resourpol.2021.102476 (2022).Article 

Google Scholar 
Fernandes, C. I., Veiga, P. M., Ferreira, J. J. M. & Hughes, M. Green growth versus economic growth: Do sustainable know-how switch and improvements result in an imperfect selection?. Bus. Strateg. Environ. 30(4), 2021–2037. https://doi.org/10.1002/bse.2730 (2021).Article 

Google Scholar 
Orsatti, G., Quatraro, F. & Pezzoni, M. The antecedents of green applied sciences: The function of team-level recombinant capabilities. Res. Policy 49(3), 103919. https://doi.org/10.1016/j.respol.2019.103919 (2020).Article 

Google Scholar 
Lin, B. & Zhou, Y. Measuring the green economic growth in China: Influencing components and coverage views. Energy 241(15), 122518. https://doi.org/10.1016/j.energy.2021.122518 (2022).Article 

Google Scholar 
Fang, M. & Chang, C. L. Nexus between fiscal imbalances, green fiscal spending, and green economic growth: Empirical findings from E-7 economies. Econ. Change Restruct. 55, 2423–2443. https://doi.org/10.1007/s10644-022-09392-6 (2022).Article 

Google Scholar 
Qian, Y., Liu, J. & Forrest, J. Y. L. Impact of monetary agglomeration on regional green economic growth: Evidence from China. J. Environ. Plan. Manag. 65(9), 1611–1636. https://doi.org/10.1080/09640568.2021.1941811 (2022).Article 

Google Scholar 
Awais, M., Afzal, A., Firdousi, S. & Hasnaoui, A. Is fintech the new path to sustainable useful resource utilisation and economic improvement?. Resour. Policy 81, 103309. https://doi.org/10.1016/j.resourpol.2023.103309 (2023).Article 

Google Scholar 
Ahmed, E. M. & Elfaki, Ok. E. Green technological progress implications on long-run sustainable economic growth. J. Knowl. Econ. https://doi.org/10.1007/s13132-023-01268-y (2023).Article 

Google Scholar 
Shen, F. et al. The impact of economic growth goal constraints on green know-how innovation. J. Environ. Manag. 292(15), 112765. https://doi.org/10.1016/j.jenvman.2021.112765 (2021).Article 

Google Scholar 
Zhao, L. et al. Enhancing green economic restoration by means of green bonds financing and power effectivity investments. Econ. Anal. Policy 76, 488–501. https://doi.org/10.1016/j.eap.2022.08.019 (2022).Article 

Google Scholar 
Ferreira, J. J. et al. Diverging or converging to a green world? Impact of green growth measures on countries’ economic efficiency. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-023-02991-x (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Song, X., Zhou, Y. & Jia, W. How do economic openness and R&D funding have an effect on green economic growth?—Evidence from China. Resour. Conserv. Recycl. 149, 405–415. https://doi.org/10.1016/j.resconrec.2019.03.050 (2019).Article 

Google Scholar 
Xu, J., She, S., Gao, P. & Sun, Y. Role of green finance in useful resource effectivity and green economic growth. Resour. Policy 81, 103349 (2023).Article 

Google Scholar 
Zhou, Y., Tian, L. & Yang, X. Schumpeterian endogenous growth model underneath green innovation and its enculturation impact. Energy Econ. 127, 107109. https://doi.org/10.1016/j.eneco.2023.107109 (2023).Article 

Google Scholar 
Luukkanen, J. et al. Resource effectivity and green economic sustainability transition analysis of green growth productiveness hole and governance challenges in Cambodia. Sustain. Dev. 27(3), 312–320. https://doi.org/10.1002/sd.1902 (2019).Article 

Google Scholar 
Wang, Ok., Umar, M., Akram, R. & Caglar, E. Is technological innovation making world “Greener”? An proof from altering growth story of China. Technol. Forecast. Soc. Change 165, 120516. https://doi.org/10.1016/j.techfore.2020.120516 (2021).Article 

Google Scholar 
Talebzadehhosseini, S. & Garibay, I. The interplay results of technological innovation and path-dependent economic growth on nations general green growth efficiency. J. Clean. Prod. 333(20), 130134. https://doi.org/10.1016/j.jclepro.2021.130134 (2022).Article 

Google Scholar 
Ge, T., Li, C., Li, J. & Hao, X. Does neighboring green improvement profit or undergo from native economic growth targets? Evidence from China. Econ. Modell. 120, 106149. https://doi.org/10.1016/j.econmod.2022.106149 (2023).Article 

Google Scholar 
Lin, B. & Zhu, J. Fiscal spending and green economic growth: Evidence from China. Energy Econ. 83, 264–271. https://doi.org/10.1016/j.eneco.2019.07.010 (2019).Article 

Google Scholar 
Sohail, M. T., Ullah, S. & Majeed, M. T. Effect of coverage uncertainty on green growth in high-polluting economies. J. Clean. Prod. 380(20), 135043. https://doi.org/10.1016/j.jclepro.2022.135043 (2022).Article 

Google Scholar 
Sarwar, S. Impact of power depth, green financial system and blue financial system to attain sustainable economic growth in GCC nations: Does Saudi Vision 2030 issues to GCC nations. Renew. Energy 191, 30–46. https://doi.org/10.1016/j.renene.2022.03.122 (2022).Article 

Google Scholar 
Park, J. & Page, G. W. Innovative green financial system, city economic efficiency and concrete environments: An empirical evaluation of US cities. Eur. Plann. Stud. 25(5), 772–789. https://doi.org/10.1080/09654313.2017.1282078 (2017).Article 

Google Scholar 
Feng, Y., Chen, Z. & Nie, C. The impact of broadband infrastructure building on city green innovation: Evidence from a quasi-natural experiment in China. Econ. Anal. Policy 77, 581–598. https://doi.org/10.1016/j.eap.2022.12.020 (2023).Article 

Google Scholar 
Zhang, X. & Fan, D. Collaborative emission discount analysis on dual-pilot insurance policies of the low-carbon metropolis and good metropolis from the perspective of a number of improvements. Urban Climate 47, 101364. https://doi.org/10.1016/j.uclim.2022.101364 (2023).Article 

Google Scholar 
Cheng, J., Yi, J., Dai, S. & Xiong, Y. Can low-carbon metropolis building facilitate green growth? Evidence from China’s pilot low-carbon metropolis initiative. J. Clean. Prod. 231(10), 1158–1170. https://doi.org/10.1016/j.jclepro.2019.05.327 (2019).Article 

Google Scholar 
Li, L. China’s manufacturing locus in 2025: With a comparability of “Made-in-China 2025” and “Industry 4.0”. Technol. Forecast. Soc. Change 135, 66–74. https://doi.org/10.1016/j.techfore.2017.05.028 (2018).Article 

Google Scholar 
Wang, J., Wu, H. & Chen, Y. Made in China 2025 and manufacturing strategy selections with reverse QFD. Int. J. Prod. Econ. 224, 107539. https://doi.org/10.1016/j.ijpe.2019.107539 (2020).Article 

Google Scholar 
Liu, X., Megginson, W. L. & Xia, J. Industrial coverage and asset costs: Evidence from the Made in China 2025 coverage. J. Bank. Finance 142, 106554. https://doi.org/10.1016/j.jbankfin.2022.106554 (2022).Article 

Google Scholar 
Chen, Ok. et al. How does industrial coverage experimentation affect innovation efficiency? A case of Made in China 2025. Humanit. Soc. Sci. Commun. 11, 40. https://doi.org/10.1057/s41599-023-02497-x (2024).Article 
CAS 

Google Scholar 
Xu, L. Towards green innovation by China’s industrial coverage: Evidence from Made in China 2025. Front. Environ. Sci. 10, 924250. https://doi.org/10.3389/fenvs.2022.924250 (2022).Article 

Google Scholar 
Li, X., Han, H. & He, H. Advanced manufacturing firms’ digital transformation and exploratory innovation. Appl. Econ. Lett. https://doi.org/10.1080/13504851.2024.2305665 (2024).Article 

Google Scholar 
Liu, G. & Liu, B. How digital know-how improves the high-quality improvement of enterprises and capital markets: A liquidity perspective. Finance Res. Lett. 53, 103683 (2023).Article 

Google Scholar 
Chernozhukov, V. et al. Double/debiased machine learning for remedy and structural parameters. Econom. J. 21(1), C1–C68. https://doi.org/10.1111/ectj.12097 (2018).Article 
MathSciNet 

Google Scholar 
Athey, S., Tibshirani, J. & Wager, S. Generalized random forests. Ann. Stat. 47(2), 1148–1178. https://doi.org/10.1214/18-AOS1709 (2019).Article 
MathSciNet 

Google Scholar 
Knittel, C. R. & Stolper, S. Machine learning about remedy impact heterogeneity: The case of family power use. AEA Pap. Proc. 111, 440–444 (2021).Article 

Google Scholar 
Yang, J., Chuang, H. & Kuan, C. Double machine learning with gradient boosting and its software to the Big N audit high quality impact. J. Econom. 216(1), 268–283. https://doi.org/10.1016/j.jeconom.2020.01.018 (2020).Article 
MathSciNet 

Google Scholar 
Zhang, Y., Li, H. & Ren, G. Quantifying the social impacts of the London Night Tube with a double/debiased machine learning based mostly difference-in-differences method. Transp. Res. Part A Policy Pract. 163, 288–303. https://doi.org/10.1016/j.tra.2022.07.015 (2022).Article 

Google Scholar 
Farbmacher, H., Huber, M., Lafférs, L., Langen, H. & Spindler, M. Causal mediation evaluation with double machine learning. Econom. J. 25(2), 277–300. https://doi.org/10.1093/ectj/utac003 (2022).Article 
MathSciNet 

Google Scholar 
Chiang, H., Kato, Ok., Ma, Y. & Sasaki, Y. Multiway cluster sturdy double/debiased machine learning. J. Bus. Econ. Stat. 40(3), 1046–1056. https://doi.org/10.1080/07350015.2021.1895815 (2022).Article 
MathSciNet 

Google Scholar 
Bodory, H., Huber, M. & Lafférs, L. Evaluating (weighted) dynamic remedy results by double machine learning. Econom. J. 25(3), 628–648. https://doi.org/10.1093/ectj/utac018 (2022).Article 
MathSciNet 

Google Scholar 
Waheed, R., Sarwar, S. & Alsaggaf, M. I. Relevance of power, green and blue components to attain sustainable economic growth: Empirical examine of Saudi Arabia. Technol. Forecast. Soc. Change 187, 122184. https://doi.org/10.1016/j.techfore.2022.122184 (2023).Article 

Google Scholar 
Taskin, D., Vardar, G. & Okan, B. Does renewable power promote green economic growth in OECD nations?. Sustain. Account. Manag. Policy J. 11(4), 771–798. https://doi.org/10.1108/SAMPJ-04-2019-0192 (2020).Article 

Google Scholar 
Ding, X. & Liu, X. Renewable power improvement and transportation infrastructure issues for green economic growth? Empirical proof from China. Econ. Anal. Policy 79, 634–646. https://doi.org/10.1016/j.eap.2023.06.042 (2023).Article 

Google Scholar 
Ferguson, P. The green financial system agenda: Business as traditional or transformational discourse?. Environ. Polit. 24(1), 17–37. https://doi.org/10.1080/09644016.2014.919748 (2015).Article 

Google Scholar 
Pan, D., Yu, Y., Hong, W. & Chen, S. Does campaign-style environmental regulation induce green economic growth? Evidence from China’s central environmental safety inspection coverage. Energy Environ. https://doi.org/10.1177/0958305X231152483 (2023).Article 

Google Scholar 
Zhang, Q., Qu, Y. & Zhan, L. Great transition and new sample: Agriculture and rural space green improvement and its coordinated relationship with economic growth in China. J. Environ. Manag. 344, 118563. https://doi.org/10.1016/j.jenvman.2023.118563 (2023).Article 

Google Scholar 
Li, J., Dong, Ok. & Dong, X. Green power as a brand new determinant of green growth in China: The function of green technological innovation. Energy Econ. 114, 106260. https://doi.org/10.1016/j.eneco.2022.106260 (2022).Article 

Google Scholar 
Herman, Ok. S. et al. A essential overview of green growth indicators in G7 economies from 1990 to 2019. Sustain. Sci. 18, 2589–2604. https://doi.org/10.1007/s11625-023-01397-y (2023).Article 

Google Scholar 
Mura, M., Longo, M., Zanni, S. & Toschi, L. Exploring socio-economic externalities of improvement eventualities. An evaluation of EU areas from 2008 to 2016. J. Environ. Manag. 332, 117327. https://doi.org/10.1016/j.jenvman.2023.117327 (2023).Article 

Google Scholar 
Huang, S. Do green financing and industrial construction matter for green economic restoration? Fresh empirical insights from Vietnam. Econ. Anal. Policy 75, 61–73. https://doi.org/10.1016/j.eap.2022.04.010 (2022).Article 

Google Scholar 
Li, J., Dong, X. & Dong, Ok. Is China’s green growth doable? The roles of green commerce and green power. Econ. Res.-Ekonomska Istraživanja 35(1), 7084–7108. https://doi.org/10.1080/1331677X.2022.2058978 (2022).Article 

Google Scholar 
Zhang, H. et al. Promoting eco-tourism for the green economic restoration in ASEAN. Econ. Change Restruct. 56, 2021–2036. https://doi.org/10.1007/s10644-023-09492-x (2023).Article 
ADS 

Google Scholar 
Ahmed, F., Kousar, S., Pervaiz, A. & Shabbir, A. Do institutional high quality and monetary improvement have an effect on sustainable economic growth? Evidence from South Asian nations. Borsa Istanbul Rev. 22(1), 189–196. https://doi.org/10.1016/j.bir.2021.03.005 (2022).Article 

Google Scholar 
Yuan, S., Li, C., Wang, M., Wu, H. & Chang, L. A means towards green economic growth: Role of power effectivity and financial incentive in China. Econ. Anal. Policy 79, 599–609. https://doi.org/10.1016/j.eap.2023.06.004 (2023).Article 

Google Scholar 
Capasso, M., Hansen, T., Heiberg, J., Klitkou, A. & Steen, M. Green growth – A synthesis of scientific findings. Technol. Forecast. Soc. Change 146, 390–402. https://doi.org/10.1016/j.techfore.2019.06.013 (2019).Article 

Google Scholar 
Wei, X., Ren, H., Ullah, S. & Bozkurt, C. Does environmental entrepreneurship play a task in sustainable green improvement? Evidence from rising Asian economies. Econ. Res. Ekonomska Istraživanja 36(1), 73–85. https://doi.org/10.1080/1331677X.2022.2067887 (2023).Article 

Google Scholar 
Iqbal, Ok., Sarfraz, M. & Khurshid,. Exploring the function of data communication know-how, commerce, and overseas direct funding to advertise sustainable economic growth: Evidence from Belt and Road Initiative economies. Sustain. Dev. 31(3), 1526–1535. https://doi.org/10.1002/sd.2464 (2023).Article 

Google Scholar 
Li, Y., Zhang, J. & Lyu, Y. Toward inclusive green growth for sustainable improvement: A new perspective of labor market distortion. Bus. Strategy Environ. 32(6), 3927–3950. https://doi.org/10.1002/bse.3346 (2023).Article 

Google Scholar 
Chernozhukov, V. et al. Double/Debiased/Neyman machine learning of remedy results. Am. Econ. Rev. 107(5), 261–265. https://doi.org/10.1257/aer.p20171038 (2017).Article 

Google Scholar 
Chen, C. Super efficiencies or tremendous inefficiencies? Insights from a joint computation model for slacks-based measures in DEA. Eur. J. Op. Res. 226(2), 258–267. https://doi.org/10.1016/j.ejor.2012.10.031 (2013).Article 
ADS 
MathSciNet 

Google Scholar 
Tone, Ok., Chang, T. & Wu, C. Handling unfavourable knowledge in slacks-based measure knowledge envelopment evaluation fashions. Eur. J. Op. Res. 282(3), 926–935 (2020).Article 
MathSciNet 

Google Scholar 
Sarkodie, S. A., Owusu, P. A. & Taden, J. Comprehensive green growth indicators throughout nations and territories. Sci. Data 10, 413. https://doi.org/10.1038/s41597-023-02319-4 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Jiang, Z., Wang, Z. & Lan, X. How environmental rules have an effect on company innovation? The coupling mechanism of necessary guidelines and voluntary administration. Technol. Soc. 65, 101575 (2021).Article 

Google Scholar 
Oh, D. H. & Heshmati, A. A sequential Malmquist-Luenberger productiveness index: Environmentally delicate productiveness growth contemplating the progressive nature of know-how. Energy Econ. 32(6), 1345–1355. https://doi.org/10.1016/j.eneco.2010.09.003 (2010).Article 

Google Scholar 
Tone, Ok. & Tsutsui, M. An epsilon-based measure of effectivity in DEA – A third pole of technical effectivity. Eur. J. Op. Res. 207(3), 1554–1563. https://doi.org/10.1016/j.ejor.2010.07.014 (2010).Article 
MathSciNet 

Google Scholar 
Lv, C., Song, J. & Lee, C. Can digital finance slim the regional disparities in the high quality of economic growth? Evidence from China. Econ. Anal. Policy 76, 502–521. https://doi.org/10.1016/j.eap.2022.08.022 (2022).Article 

Google Scholar 
Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W. & Wager, S. Synthetic difference-in-differences. Am. Econ. Rev. 111(12), 4088–4118 (2021).Article 

Google Scholar 
Abadie, A., Diamond, A. & Hainmueller, J. Synthetic management strategies for comparative case research: Estimating the impact of California’s tobacco management program. J. Am. Stat. Assoc. 105(490), 493–505 (2010).Article 
MathSciNet 
CAS 

Google Scholar 
Fang, J., Tang, X., Xie, R. & Han, F. The impact of manufacturing agglomerations on smog air pollution. Struct. Change Econ. Dyn. 54, 92–101. https://doi.org/10.1016/j.strueco.2020.04.003 (2020).Article 

Google Scholar 
Yang, S. & Liu, F. Impact of industrial intelligence on green whole issue productiveness: The indispensability of the environmental system. Ecol. Econ. 216, 108021. https://doi.org/10.1016/j.ecolecon.2023.108021 (2024).Article 

Google Scholar 
Zhang, P., Wang, Y., Wang, R. & Wang, T. Digital finance and company innovation: Evidence from China. Appl. Econ. 56(5), 615–638. https://doi.org/10.1080/00036846.2023.2169242 (2024).Article 

Google Scholar 

https://www.nature.com/articles/s41598-024-62916-0

Recommended For You