Predicting graft failure in pediatric liver transplantation based on early biomarkers using machine learning models

Elisofon, S. A. et al. Society of pediatric liver transplantation: Current registry standing 2011–2018. Pediatr. Transplant. 24, e13605. https://doi.org/10.1111/petr.13605 (2020).Article 

Google Scholar 
Cuenca, A. G., Kim, H. B. & Vakili, Okay. Pediatric liver transplantation. Semin. Pediatr. Surg. 26, 217–223. https://doi.org/10.1053/j.sempedsurg.2017.07.014 (2017).Article 

Google Scholar 
Kwong, A. J. et al. OPTN/SRTR 2019 annual knowledge report: Liver. Am. J. Transplant. Off. J. Am. Soc. Transpl. Am. Soc. Transpl. Surg. 21(Suppl 2), 208–315. https://doi.org/10.1111/ajt.16494 (2021).Article 

Google Scholar 
Kim, W. R. et al. OPTN/SRTR 2017 annual knowledge report: Liver. Am. J. Transplant. 19, 184–283. https://doi.org/10.1111/ajt.15276 (2019).Article 

Google Scholar 
Kohli, R., Cortes, M., Heaton, N. D. & Dhawan, A. Liver transplantation in kids: State of the artwork and future views. Arch. Dis. Child. 103, 192–198. https://doi.org/10.1136/archdischild-2015-310023 (2018).Article 

Google Scholar 
Tran, L. T., Carullo, P. C., Banh, D. P. T., Vitu, C. & Davis, P. J. Pediatric liver transplantation: Then and now. J. Cardiothorac. Vasc. Anesth. 34, 2028–2035. https://doi.org/10.1053/j.jvca.2020.02.019 (2020).Article 

Google Scholar 
McDiarmid, S. V., Anand, R., Martz, Okay., Millis, M. J. & Mazariegos, G. A multivariate evaluation of pre-, peri-, and post-transplant elements affecting end result after pediatric liver transplantation. Ann. Surg. 254, 145–154. https://doi.org/10.1097/SLA.0b013e31821ad86a (2011).Article 

Google Scholar 
Nacoti, M. et al. Early detection of the graft failure after pediatric liver transplantation: A Bergamo expertise. Acta Anaesthesiol. Scand. 55, 842–850. https://doi.org/10.1111/j.1399-6576.2011.02473.x (2011).Article 

Google Scholar 
Ciria, R. et al. Predictors of early graft survival after pediatric liver transplantation. Liver Transp. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transp. Soc. 18, 1324–1332. https://doi.org/10.1002/lt.23532 (2012).Article 

Google Scholar 
Wagener, G., Raffel, B., Young, A. T., Minhaz, M. & Emond, J. Predicting early allograft failure and mortality after liver transplantation: the function of the postoperative mannequin for end-stage liver illness rating. Liver Transpl. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transpl. Soc. 19, 534–542. https://doi.org/10.1002/lt.23634 (2013).Article 

Google Scholar 
Shelatkar, T., Urvashi, D., Shorfuzzaman, M., Alsufyani, A. & Lakshmanna, Okay. Diagnosis of mind tumor using mild weight deep learning mannequin with fine-tuning method. Comput. Math. Methods Med. 2022, 2858845. https://doi.org/10.1155/2022/2858845 (2022).Article 

Google Scholar 
Kumar, V. et al. Addressing binary classification over class imbalanced medical datasets using computationally clever strategies. Healthc. (Basel, Switz.) https://doi.org/10.3390/healthcare10071293 (2022).Article 

Google Scholar 
Lau, L. et al. Machine-learning algorithms predict graft failure after liver transplantation. Transplantation 101, e125–e132. https://doi.org/10.1097/tp.0000000000001600 (2017).Article 

Google Scholar 
Dorado-Moreno, M. et al. Dynamically weighted evolutionary ordinal neural community for fixing an imbalanced liver transplantation downside. Artif. Intell. Med. 77, 1–11. https://doi.org/10.1016/j.artmed.2017.02.004 (2017).Article 

Google Scholar 
Ayllón, M. D. et al. Validation of synthetic neural networks as a technique for donor-recipient matching for liver transplantation. Liver Transpl. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transpl. Soc. 24, 192–203. https://doi.org/10.1002/lt.24870 (2018).Article 

Google Scholar 
Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x (1996).Article 
MathSciNet 
MATH 

Google Scholar 
Zou, H. & Hastie, T. Regularization and variable choice through the elastic internet. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x (2005).Article 
MathSciNet 
MATH 

Google Scholar 
Meinshausen, N. & Bühlmann, P. Stability choice. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72, 417–473. https://doi.org/10.1111/j.1467-9868.2010.00740.x (2010).Article 
MathSciNet 
MATH 

Google Scholar 
Squires, R. H. et al. Evaluation of the pediatric affected person for liver transplantation: 2014 follow guideline by the American Association for the Study of Liver Diseases, American Society of Transplantation and the North American Society for Pediatric Gastroenterology Hepatology and Nutrition. Hepatol. (Baltim. Md.) 60, 362–398. https://doi.org/10.1002/hep.27191 (2014).Article 

Google Scholar 
Loftus, T. J. et al. Artificial Intelligence and Surgical Decision-making. JAMA Surg. 155, 148–158. https://doi.org/10.1001/jamasurg.2019.4917 (2020).Article 

Google Scholar 
Hong, S. Okay. et al. Outcomes of pediatric liver transplantation in Korea using two nationwide registries. J. Clin. Med. 9, 3435 (2020).Article 

Google Scholar 
Wadhwani, S. I. et al. Predicting ultimate end result after pediatric liver transplantation: An exploratory research using machine learning analyses to leverage Studies of Pediatric Liver Transplantation Data. Pediatr. Transplant. 23, e13554. https://doi.org/10.1111/petr.13554 (2019).Article 

Google Scholar 
Vilstrup, H. et al. Hepatic encephalopathy in persistent liver illness: 2014 Practice guideline by the American affiliation for the research of liver illnesses and the European affiliation for the research of the liver. Hepatol. (Baltim. Md.) 60, 715–735. https://doi.org/10.1002/hep.27210 (2014).Article 

Google Scholar 
Wijdicks, E. F. Hepatic encephalopathy. N. Engl. J. Med. 375, 1660–1670. https://doi.org/10.1056/NEJMra1600561 (2016).Article 

Google Scholar 
Krishnarao, A. & Gordon, F. D. Prognosis of hepatic encephalopathy. Clin. Liver Dis. 24, 219–229. https://doi.org/10.1016/j.cld.2020.01.004 (2020).Article 

Google Scholar 
Sahinturk, H. et al. Risk elements for postoperative extended mechanical air flow after pediatric liver transplantation. Exp. Clin. Transpl. Off. J. Middle East Soc. Organ Transpl. 19, 943–947. https://doi.org/10.6002/ect.2018.0317 (2021).Article 

Google Scholar 
Yuan, H. et al. Prognostic influence of mechanical air flow after liver transplantation: A nationwide database research. Am. J. Surg. 208, 582–590. https://doi.org/10.1016/j.amjsurg.2014.06.004 (2014).Article 

Google Scholar 
Li, J. et al. Immediate versus standard postoperative tracheal extubation for enhanced restoration after liver transplantation: IPTE versus CTE for enhanced restoration after liver transplantation. Medicine 97, e13082. https://doi.org/10.1097/md.0000000000013082 (2018).Article 

Google Scholar 
Ratcliffe, J. M., Elliott, M. J., Wyse, R. Okay., Hunter, S. & Alberti, Okay. G. The metabolic load of saved blood. Implications for main transfusions in infants. Arch. Dis. Child. 61, 1208–1214. https://doi.org/10.1136/adc.61.12.1208 (1986).Article 

Google Scholar 
Ewalenko, P., Deloof, T. & Peeters, J. Composition of recent frozen plasma. Crit. Care Med. 14, 145–146. https://doi.org/10.1097/00003246-198602000-00015 (1986).Article 

Google Scholar 
Sticova, E. & Jirsa, M. New insights in bilirubin metabolism and their medical implications. World J. Gastroenterol. 19, 6398–6407. https://doi.org/10.3748/wjg.v19.i38.6398 (2013).Article 

Google Scholar 
Muniyappa, P. & Kelley, D. Hyperbilirubinemia in pediatrics: Evaluation and care. Curr. Probl. Pediatr. Adolesc. Health Care 50, 100842. https://doi.org/10.1016/j.cppeds.2020.100842 (2020).Article 

Google Scholar 
Bekker, J., Ploem, S. & De Jong, Okay. P. Early hepatic artery thrombosis after liver transplantation: A scientific overview of the incidence, end result and threat elements. Am. J. Transplant. 9, 746–757. https://doi.org/10.1111/j.1600-6143.2008.02541.x (2009).Article 

Google Scholar 
Sevmis, S. et al. Management of early hepatic arterial thrombosis after pediatric living-donor liver transplantation. Transpl. Proc. 43, 605–608. https://doi.org/10.1016/j.transproceed.2011.01.011 (2011).Article 

Google Scholar 
Kutluturk, Okay. et al. Early hepatic artery thrombosis after pediatric dwelling donor liver transplantation. Transpl. Proc. 51, 1162–1168. https://doi.org/10.1016/j.transproceed.2019.01.104 (2019).Article 

Google Scholar 
Bezinover, D. et al. Perioperative thrombotic problems related to pediatric liver transplantation: A UNOS database analysis. HPB (Oxf.) 21, 370–378. https://doi.org/10.1016/j.hpb.2018.08.014 (2019).Article 

Google Scholar 

https://news.google.com/__i/rss/rd/articles/CBMiMmh0dHBzOi8vd3d3Lm5hdHVyZS5jb20vYXJ0aWNsZXMvczQxNTk4LTAyMi0yNTkwMC0w0gEA?oc=5

Recommended For You