Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle

Ravindran, S. Coral reefs at a tipping level. Proc. Natl Acad. Sci. 113, 5140–5141 (2016).CAS 

Google Scholar 
Lenton, T. M. et al. Climate tipping factors—too dangerous to guess in opposition to. Nature 575, 592–595 (2019).CAS 

Google Scholar 
Veron, J. E. N. et al. Delineating the Coral Triangle. Galaxea J. Coral Reef. Stud. 11, 91–100 (2009).
Google Scholar 
Hoegh-Guldberg, O. et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science 318, 1737–1742 (2007).CAS 

Google Scholar 
Brown, C., Corcoran, E. & Herkenrath, P. Marine and coastal ecosystems and human well-being: a synthesis report based mostly on the findings of the Millennium Ecosystem Assessment. (2006).Heinze, C. et al. The quiet crossing of ocean tipping factors. Proc. Natl Acad. Sci. 118, e2008478118 (2021).CAS 

Google Scholar 
Barber, P. H. The problem of understanding the Coral Triangle biodiversity hotspot. J. Biogeogr. 36, 1845–1846 (2009).
Google Scholar 
Ekman, S. Zoogeography of the Sea. (Sidgwick & Jackson, 1953).Ladd, H. S. Origin of the Pacific island molluscan fauna. Am. J. Sci. 256, 137–150 (1960).
Google Scholar 
Woodland, D. J. Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness patterns. Bull. Mar. Sci. 33, 713–717 (1983).
Google Scholar 
Loveland, T. R. & Merchant, J. M. Ecoregions and ecoregionalization: geographical and ecological views. Environ. Manag. 34, S1–S13 (2004).
Google Scholar 
Levins, R. Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).
Google Scholar 
Obura, D. The Diversity and Biogeography of Western Indian Ocean Reef-Building Corals. PLoS One. 7, e45013 (2012).CAS 

Google Scholar 
Fontoura, L. et al. Protecting connectivity promotes profitable biodiversity and fisheries conservation. Science 375, 336–340 (2022).CAS 

Google Scholar 
Roberts, C. M. Connectivity and Management of Caribbean Coral Reefs. Science 278, 1454–1457 (1997).CAS 

Google Scholar 
Ayre, D. J. & Hughes, T. P. Climate change, genotypic variety and gene circulation in reef-building corals: Gene circulation in reef constructing corals. Ecol. Lett. 7, 273–278 (2004).
Google Scholar 
Graham, N. A. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. 103, 8425–8429 (2006).CAS 

Google Scholar 
McClanahan, T. R. et al. Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS One. 7, e42884 (2012).CAS 

Google Scholar 
Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an Isolated Coral Reef System Following Severe Disturbance. Science 340, 69–71 (2013).
Google Scholar 
Grayson, N., Clements, C. S., Towner, A. A., Beatty, D. S. & Hay, M. E. Did the historic overharvesting of sea cucumbers make coral extra prone to pathogens? Coral Reefs. 41, 447–453 (2022).
Google Scholar 
Spalding, M. D. et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 57, 573–583 (2007).
Google Scholar 
Berline, L., Rammou, A.-M., Doglioli, A., Molcard, A. & Petrenko, A. A Connectivity-Based Eco-Regionalization Method of the Mediterranean Sea. PLoS ONE. 9, e111978 (2014).
Google Scholar 
Ser-Giacomi, E., Rossi, V., López, C. & Hernández-García, E. Flow networks: A characterization of geophysical fluid transport. Chaos Interdiscip. J. Nonlinear Sci. 25, 036404 (2015).
Google Scholar 
Thompson, D. M. et al. Variability in oceanographic limitations to coral larval dispersal: Do currents form biodiversity? Prog. Oceanogr. 165, 110–122 (2018).
Google Scholar 
Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling inhabitants connectivity by ocean currents, a graph-theoretic method for marine conservation. Landsc. Ecol. 23, 19–36 (2008).
Google Scholar 
Liu, G., Bracco, A., Quattrini, A. M. & Herrera, S. Kilometer-Scale Larval Dispersal Processes Predict Metapopulation Connectivity Pathways for Paramuricea biscaya in the Northern Gulf of Mexico. Front. Mar. Sci. 8, 790927 (2021).
Google Scholar 
Fountalis, I., Dovrolis, C., Bracco, A., Dilkina, B. & Keilholz, S. δ-MAPS: from spatio-temporal knowledge to a weighted and lagged community between purposeful domains. Appl. Netw. Sci. 3, 21 (2018).
Google Scholar 
Falasca, F., Bracco, A., Nenes, A. & Fountalis, I. Dimensionality Reduction and Network Inference for Climate Data Using δ‐MAPS: Application to the CESM Large Ensemble Sea Surface Temperature. J. Adv. Model. Earth Syst. 11, 1479–1515 (2019).
Google Scholar 
Novi, L., Bracco, A. & Falasca, F. Uncovering marine connectivity by way of sea floor temperature. Sci. Rep. 11, 8839 (2021).CAS 

Google Scholar 
Kleypas, J. A., Castruccio, F. S., Curchitser, E. N. & Mcleod, F. The impression of ENSO on coral warmth stress in the western equatorial Pacific. Glob. Change Biol. 21, 2525–2539 (2015).
Google Scholar 
GLOBAL_REANALYSIS_001_030. Global Ocean Physics Reanalysis GLORYS12V1 1/12° product. MERCATOR GLORYS12V1 (global-reanalysis-001-030-monthly). E.U. Copernicus Marine Service Information (CMEMS). https://doi.org/10.48670/moi-00021.Lellouche, J.-M. et al. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Front. Earth Sci. 9, 698876 (2021).
Google Scholar 
Treml, E. A. & Halpin, P. N. Marine inhabitants connectivity identifies ecological neighbors for conservation planning in the Coral Triangle: Ecological neighbors in conservation. Conserv. Lett. 5, 441–449 (2012).
Google Scholar 
Meyers, G. Variation of Indonesian throughflow and the El Niño-Southern Oscillation. J. Geophys. Res. Oceans 101, 12255–12263 (1996).
Google Scholar 
Wolfram Research (2012), FindGraphCommunities, Wolfram Language perform. https://reference.wolfram.com/language/ref/FindGraphCommunities.html (up to date 2015).MacArthur, R. H. & Wilson, E. O. The principle of island biogeography. In The Theory of Island Biogeography (Princeton college press, 2016).Brin, S. & Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998).
Google Scholar 
Wolfram Research (2010), PageRankCentrality, Wolfram Language perform. https://reference.wolfram.com/language/ref/PageRankCentrality.html (Updated 2015).NOAA Coral Reef Watch program, 20180813, NOAA Coral Reef Watch Version 3.1 Daily Global 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite: NOAA Coral Reef Watch program, College Park, Maryland, USA. https://coralreefwatch.noaa.gov/product/5km/.Liu, G. et al. Reef-Scale Thermal Stress Monitoring of Coral Ecosystems: New 5-km Global Products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014).
Google Scholar 
Liu, G. et al. NOAA Coral Reef Watch’s 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite Version 3 and Four-Month Outlook Version 4. 32, 7 (2017).Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. Ok. Global patterns and impacts of El Niño occasions on coral reefs: A meta-analysis. PLOS ONE 13, e0190957 (2018).
Google Scholar 
Sully, S., Burkepile, D. E., Donovan, M. Ok., Hodgson, G. & van Woesik, R. A world evaluation of coral bleaching over the previous 20 years. Nat. Commun. 10, 1264 (2019).CAS 

Google Scholar 
Darling, E. S. et al. Social–environmental drivers inform strategic administration of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).
Google Scholar 
Dance, A. These corals might survive local weather change—and assist save the world’s reefs. Nature 575, 580–582 (2019).CAS 

Google Scholar 
Renema, W. et al. Hopping Hotspots: Global Shifts in Marine Biodiversity. Science 321, 654–657 (2008).CAS 

Google Scholar 
Weiss, T. L., Denniston, R. F., Wanamaker, A. D., Villarini, G. & von der Heydt, A. S. El Niño–Southern Oscillation–like variability in a late Miocene Caribbean coral. Geology 45, 643–646 (2017).
Google Scholar 
Watanabe, T. et al. Permanent El Niño throughout the Pliocene heat interval not supported by coral proof. Nature 471, 209–211 (2011).CAS 

Google Scholar 
Von Der Heydt, A. S. & Dijkstra, H. A. The impression of ocean gateways on ENSO variability in the Miocene. Geol. Soc. Lond. Spec. Publ. 355, 305–318 (2011).
Google Scholar 
Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. 117, 12891–12896 (2020).CAS 

Google Scholar 
Falasca, F., Crétat, J., Bracco, A., Braconnot, P. & Marti, O. Climate change in the Indo-Pacific basin from mid- to late Holocene. Clim. Dyn. 59, 753–766 (2022).
Google Scholar 
Treml, E. A., Ford, J. R., Black, Ok. P. & Swearer, S. E. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation penalties of larval dispersal in the sea. Mov. Ecol. 3, 17 (2015).
Google Scholar 
Hackerott, S., Martell, H. A. & Eirin-Lopez, J. M. Coral environmental reminiscence: causes, mechanisms, and penalties for future reefs. Trends Ecol. Evol. 36, 1011–1023 (2021).
Google Scholar 
Ogle, Ok. et al. Quantifying ecological reminiscence in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).
Google Scholar 
Peterson, G. D. Contagious Disturbance, Ecological Memory, and the Emergence of Landscape Pattern. Ecosystems 5, 329–338 (2002).
Google Scholar 
Thomas, L., López, E. H., Morikawa, M. Ok. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐constructing corals. Mol. Ecol. 28, 3371–3382 (2019).
Google Scholar 
Dziedzic, Ok. E., Elder, H., Tavalire, H. & Meyer, E. Heritable variation in bleaching responses and its purposeful genomic foundation in reef‐constructing corals (Orbicella faveolata). Mol. Ecol. 28, 2238–2253 (2019).
Google Scholar 
Ainsworth, T. D. et al. Climate change disables coral bleaching safety on the Great Barrier Reef. Science 352, 338–342 (2016).CAS 

Google Scholar 
Harrison, H. B., Bode, M., Williamson, D. H., Berumen, M. L. & Jones, G. P. A connectivity portfolio impact stabilizes marine reserve efficiency. Proc. Natl Acad. Sci. 117, 25595–25600 (2020).CAS 

Google Scholar 
Leeuwenburgh, O. & Stammer, D. The Effect of Ocean Currents on Sea Surface Temperature Anomalies. J. Phys. Oceanogr. 31, 2340–2358 (2001).
Google Scholar 
Box, G. E., Jenkins, G. M. & Reinsel, G. C. Time sequence evaluation: forecasting and management. (Wiley, 2011).Falasca, F. & Bracco, A. Exploring the tropical Pacific manifold in fashions and observations. Phys. Rev. X 12, 021054 (2022).CAS 

Google Scholar 
NOAA (National Oceanic and Atmospheric Administration), (2019a). Nino areas. https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/nino_regions.shtml.NOAA (National Oceanic and Atmospheric Administration), (2019b). Cold and heat episodes by season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.Baird, A. et al. Coral Spawning Database. 10552719 Bytes https://doi.org/10.25405/DATA.NCL.13082333.V1 (2020).UNEP-WCMC, WorldFish Centre, WRI, TNC (2021). Global distribution of warm-water coral reefs, compiled from a number of sources together with the Millennium Coral Reef Mapping Project. Version 4.1. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001). Cambridge (UK): UN Environment World Conservation Monitoring Centre. Data https://doi.org/10.34892/t2wk-5t34.IMaRS-USF, IRD (Institut de Recherche pour le Developpement) (2005). Millennium Coral Reef Mapping Project. Validated maps. Cambridge (UK): UNEP World Conservation Monitoring Centre.IMaRS-USF (Institute for Marine Remote Sensing-University of South Florida) (2005). Millennium Coral Reef Mapping Project. Unvalidated maps. These maps are unendorsed by IRD, however have been additional interpreted by UNEP World Conservation Monitoring Centre. Cambridge (UK): UNEP World Conservation Monitoring Centre.Spalding, M., Ravilious, C. & Green, E. World atlas of coral reefs. Choice Rev. Online. 39, 39-2540–39–2540 (2002).
Google Scholar 

https://news.google.com/__i/rss/rd/articles/CBMiMmh0dHBzOi8vd3d3Lm5hdHVyZS5jb20vYXJ0aWNsZXMvczQyMDAzLTAyMi0wNDMzMC040gEA?oc=5

Recommended For You