Explainable machine learning analysis reveals sex and gender differences in the phenotypic and neurobiological markers of Cannabis Use Disorder

SAMSHA. Key Substance Use and Mental Health Indicators in the United States: Results from the 2018 National Survey on Drug Use and Health 82 (2018).Hasin, D. S. et al. Prevalence of marijuana use issues in the United States between 2001–2002 and 2012–2013. JAMA Psychiat. 72(12), 1235–1242 (2015).Article 

Google Scholar 
Chapman, C. et al. Evidence for sex convergence in prevalence of hashish use: A scientific overview and meta-regression. J. Stud. Alcohol Drugs. 78(3), 344–352 (2017).PubMed 
PubMed Central 
Article 

Google Scholar 
Nia, A. B., Mann, C., Kaur, H. & Ranganathan, M. Cannabis use: Neurobiological, behavioral, and sex/gender issues. Curr. Behav. Neurosci. Rep. 5(4), 271–280 (2018).PubMed 
PubMed Central 
Article 

Google Scholar 
Substance Abuse and Mental Health Services Administration. Results from the 2006 National Survey on Drug Use and Health: National Findings 282 (2007).Center for Behavioral Health Statistics and Quality. 2017 National Survey on Drug Use and Health: Detailed Tables 2871 (Substance Abuse and Mental Health Services Administration, 2017).
Google Scholar 
Khan, S. S. et al. Gender differences in hashish use issues: Results from the nationwide epidemiologic survey of alcohol and associated situations. Drug Alcohol Depend. 130, 101–108 (2013).PubMed 
Article 

Google Scholar 
Hernandez-Avila, C. A., Rounsaville, B. J. & Kranzler, H. R. Opioid-, cannabis- and alcohol-dependent ladies present extra fast development to substance abuse remedy. Drug Alcohol Depend. 74(3), 265–272 (2004).CAS 
PubMed 
Article 

Google Scholar 
Greaves, L. & Hemsing, N. Sex and gender interactions on the use and influence of leisure hashish. Int. J. Environ. Res. Public Health. 17(2), E509 (2020).PubMed 
Article 
CAS 

Google Scholar 
Spechler, P. A. et al. The initiation of hashish use in adolescence is predicted by sex-specific psychosocial and neurobiological options. Eur. J. Neurosci. 50(3), 2346–2356 (2019).PubMed 
Article 

Google Scholar 
Becker, J. B., McClellan, M. L. & Reed, B. G. Sex differences, gender and dependancy. J. Neurosci. Res. 95(1–2), 136–147 (2017).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Lundberg, S. M. & Lee, S. I. A unified strategy to decoding mannequin predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).
Google Scholar 
Koob, G. F. & Volkow, N. D. Neurobiology of dependancy: A neurocircuitry analysis. Lancet Psychiatry 3(8), 760–773 (2016).PubMed 
PubMed Central 
Article 

Google Scholar 
Bickel, W. Ok. et al. twenty first century neurobehavioral theories of choice making in dependancy: Review and analysis. Pharmacol. Biochem. Behav. 164, 4–21 (2018).CAS 
PubMed 
Article 

Google Scholar 
Yücel, M. et al. A transdiagnostic dimensional strategy in the direction of a neuropsychological evaluation for dependancy: An worldwide Delphi consensus research. Addiction 114(6), 1095–1109 (2019).PubMed 
Article 

Google Scholar 
Zilverstand, A. & Goldstein, R. Z. Chapter 3—Dual fashions of drug dependancy: the impaired response inhibition and salience attribution mannequin. In Cognition and Addiction (ed. Verdejo-Garcia, A.) 17–23 (Academic Press, 2020).Chapter 

Google Scholar 
Redish, A. D., Jensen, S. & Johnson, A. A unified framework for dependancy: Vulnerabilities in the choice course of. Behav. Brain Sci. 31(4), 415–487 (2008).PubMed 
PubMed Central 
Article 

Google Scholar 
Rawls, E., Kummerfeld, E. & Zilverstand, A. An built-in multimodal mannequin of alcohol use dysfunction generated by data-driven causal discovery analysis. Commun. Biol. 4(1), 1–12 (2021).Article 
CAS 

Google Scholar 
Meier, M. H. et al. Which adolescents develop persistent substance dependence in maturity? Using population-representative longitudinal information to tell common threat evaluation. Psychol. Med. 46(4), 877–889 (2016).CAS 
PubMed 
Article 

Google Scholar 
Khurana, A., Romer, D., Betancourt, L. M. & Hurt, H. Working reminiscence capability and early drug use development as predictors of adolescent substance use issues. Addict. Abingt. Engl. 112(7), 1220–1228 (2017).Article 

Google Scholar 
Wilson, S., Malone, S. M., Venables, N. C., McGue, M. & Iacono, W. G. Multimodal indicators of threat for and penalties of substance use issues: Executive capabilities and trait disconstraint assessed from preadolescence into early maturity. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2019.12.007 (2019).Article 

Google Scholar 
Meier, M. H. et al. Associations between adolescent hashish use and neuropsychological decline: A longitudinal co-twin management research. Addict. Abingt. Engl. 113(2), 257–265 (2018).Article 

Google Scholar 
Schlossarek, S., Kempkensteffen, J., Reimer, J. & Verthein, U. Psychosocial determinants of hashish dependence: A scientific overview of the literature. Eur. Addict. Res. 22(3), 131–144 (2016).PubMed 
Article 

Google Scholar 
Defoe, I. N., Khurana, A., Betancourt, L., Hurt, H. & Romer, D. Disentangling longitudinal relations between youth hashish use, peer hashish use, and conduct issues: Developmental cascading hyperlinks to hashish use dysfunction. Addiction 114(3), 485–493 (2019).PubMed 
Article 

Google Scholar 
Pingault, J. B. et al. Childhood trajectories of inattention, hyperactivity and oppositional behaviors and prediction of substance abuse/dependence: A 15-year longitudinal population-based research. Mol. Psychiatry. 18(7), 806–812 (2013).PubMed 
Article 

Google Scholar 
Oshri, A., Rogosch, F. A., Burnette, M. L. & Cicchetti, D. Developmental pathways to adolescent hashish abuse and dependence: Child maltreatment, rising character, and internalizing versus externalizing psychopathology. Psychol. Addict. Behav. 25(4), 634–644 (2011).PubMed 
PubMed Central 
Article 

Google Scholar 
Griffith-Lendering, M. F. H., Huijbregts, S. C. J., Mooijaart, A., Vollebergh, W. A. M. & Swaab, H. Cannabis use and growth of externalizing and internalizing behaviour issues in early adolescence: A TRAILS research. Drug Alcohol Depend. 116(1), 11–17 (2011).CAS 
PubMed 
Article 

Google Scholar 
Farmer, R. F. et al. Internalizing and externalizing psychopathology as predictors of hashish use dysfunction onset throughout adolescence and early maturity. Psychol. Addict. Behav. 29(3), 541 (2015).PubMed 
PubMed Central 
Article 

Google Scholar 
Proctor, L. J. et al. Child maltreatment and age of alcohol and marijuana initiation in high-risk youth. Addict. Behav. 75, 64–69 (2017).PubMed 
PubMed Central 
Article 

Google Scholar 
Mills, R., Kisely, S., Alati, R., Strathearn, L. & Najman, J. M. Child maltreatment and hashish use in younger maturity: A beginning cohort research. Addiction 112(3), 494–501 (2017).PubMed 
Article 

Google Scholar 
Fridberg, D. J., Vollmer, J. M., O’Donnell, B. F. & Skosnik, P. D. Cannabis customers differ from non-users on measures of character and schizotypy. Psychiatry Res. 186(1), 46–52 (2011).PubMed 
PubMed Central 
Article 

Google Scholar 
Ketcherside, A., Jeon-Slaughter, H., Baine, J. L. & Filbey, F. M. Discriminability of character profiles in remoted and co-morbid marijuana and nicotine customers. Psychiatry Res. 238, 356–362 (2016).PubMed 
PubMed Central 
Article 

Google Scholar 
Terracciano, A., Löckenhoff, C. E., Crum, R. M., Bienvenu, O. J. & Costa, P. T. Five-Factor Model character profiles of drug customers. BMC Psychiatry 8(1), 22 (2008).PubMed 
PubMed Central 
Article 

Google Scholar 
Creemers, H. E. et al. Predicting onset of hashish use in early adolescence: The interrelation between high-intensity pleasure and disruptive habits. The TRAILS Study. J. Stud. Alcohol Drugs. 70(6), 850–858 (2009).PubMed 
Article 

Google Scholar 
Amlung, M., Vedelago, L., Acker, J., Balodis, I. & MacKillop, J. Steep delay discounting and addictive habits: a meta-analysis of steady associations. Addict. Abingt. Engl. 112(1), 51–62 (2017).Article 

Google Scholar 
Strickland, J. C., Lee, D. C., Vandrey, R. & Johnson, M. W. A scientific overview and meta-analysis of delay discounting and hashish use. Exp. Clin. Psychopharmacol. https://doi.org/10.1037/pha0000378 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Meier, M. H. et al. Persistent hashish customers present neuropsychological decline from childhood to midlife. Proc. Natl. Acad. Sci. 109(40), E2657–E2664 (2012).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Gonzalez, R., Pacheco-Colón, I., Duperrouzel, J. C. & Hawes, S. W. Does hashish use trigger declines in neuropsychological functioning? A overview of longitudinal research. J. Int. Neuropsychol. Soc. JINS 23(9–10), 893–902 (2017).PubMed 
Article 

Google Scholar 
Zilverstand, A., Huang, A. S., Alia-Klein, N. & Goldstein, R. Z. Neuroimaging impaired response inhibition and salience attribution in human drug dependancy: A scientific overview. Neuron 98(5), 886–903 (2018).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Lorenzetti, V., Chye, Y., Silva, P., Solowij, N. & Roberts, C. A. Does common hashish use have an effect on neuroanatomy? An up to date systematic overview and meta-analysis of structural neuroimaging research. Eur. Arch. Psychiatry Clin. Neurosci. 269(1), 59–71 (2019).PubMed 
Article 

Google Scholar 
Batalla, A. et al. Structural and useful imaging research in persistent hashish customers: A scientific overview of adolescent and grownup findings. PLoS ONE 8(2), e55821 (2013).ADS 
CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Maggs, J. L. et al. Predicting younger grownup diploma attainment by late adolescent marijuana use. J. Adolesc. Health Off. Publ. Soc. Adolesc. Med. 57(2), 205–211 (2015).Article 

Google Scholar 
Danielsson, A. Ok., Falkstedt, D., Hemmingsson, T., Allebeck, P. & Agardh, E. Cannabis use amongst Swedish males in adolescence and the threat of antagonistic life course outcomes: Results from a 20 year-follow-up research. Addict. Abingt. Engl. 110(11), 1794–1802 (2015).Article 

Google Scholar 
Green, Ok. M., Doherty, E. E. & Ensminger, M. E. Long-term penalties of adolescent hashish use: Examining middleman processes. Am. J. Drug Alcohol Abuse. 43(5), 567–575 (2017).PubMed 
Article 

Google Scholar 
Verweij, Ok. J. H., Huizink, A. C., Agrawal, A., Martin, N. G. & Lynskey, M. T. Is the relationship between early-onset hashish use and instructional attainment causal or on account of frequent legal responsibility?. Drug Alcohol Depend. 133(2), 580–586 (2013).PubMed 
Article 

Google Scholar 
Wiley, J. L. & Burston, J. J. Sex differences in Δ9-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci. Lett. 576, 51–55 (2014).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Narimatsu, S., Watanabe, Ok., Yamamoto, I. & Yoshimura, H. Sex distinction in the oxidative metabolism of delta 9-tetrahydrocannabinol in the rat. Biochem. Pharmacol. 41(8), 1187–1194 (1991).CAS 
PubMed 
Article 

Google Scholar 
Harte-Hargrove, L. C. & Dow-Edwards, D. L. Withdrawal from THC throughout adolescence: Sex differences in locomotor exercise and nervousness. Behav. Brain Res. 231(1), 48–59 (2012).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Fattore, L., Spano, M., Altea, S., Fadda, P. & Fratta, W. Drug- and cue-induced reinstatement of cannabinoid-seeking behaviour in male and feminine rats: Influence of ovarian hormones. Br. J. Pharmacol. 160(3), 724–735 (2010).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Fattore, L. et al. Cannabinoid self-administration in rats: Sex differences and the affect of ovarian perform. Br. J. Pharmacol. 152(5), 795–804 (2007).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Hill, M. N. et al. Endogenous cannabinoid signaling is important for stress adaptation. Proc. Natl. Acad. Sci. U.S.A. 107(20), 9406–9411 (2010).ADS 
CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Hillard, C. J., Beatka, M. & Sarvaideo, J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr. Physiol. 7(1), 1–15 (2016).PubMed 
PubMed Central 

Google Scholar 
Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system, in Proceedings of the twenty second ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 785–794 (2016) [cited 2020 Sept 8]. (KDD ’16). https://doi.org/10.1145/2939672.2939785Song, Y. Y. & Lu, Y. Decision tree strategies: Applications for classification and prediction. Shanghai Arch. Psychiatry. 27(2), 130–135 (2015).PubMed 
PubMed Central 

Google Scholar 
Shapley, L. S. A price for N-person video games. In Contributions to the Theory of Games 2nd edn (ed. Kuhn, H. W.) 307–317 (Princeton University Press, 1953).
Google Scholar 
Lundberg SM, Erion GG, Lee SI. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv (2019).Hesselbrock, M., Easton, C., Bucholz, Ok. Ok., Schuckit, M. & Hesselbrock, V. A validity research of the SSAGA-a comparability with the SCAN. Addiction 94(9), 1361–1370 (1999).CAS 
PubMed 
Article 

Google Scholar 
Barch, D. M. et al. Function in the human connectome: Task-fMRI and particular person differences in habits. Neuroimage 80, 169–189 (2013).PubMed 
Article 

Google Scholar 
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).PubMed 
Article 

Google Scholar 
Uğurbil, Ok. et al. Pushing spatial and temporal decision for useful and diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104 (2013).PubMed 
Article 
CAS 

Google Scholar 
Perlaki, G. et al. Are there any gender differences in the hippocampus quantity after head-size correction? A volumetric and voxel-based morphometric research. Neurosci. Lett. 570, 119–123 (2014).CAS 
PubMed 
Article 

Google Scholar 
Zalesky, A., Fornito, A. & Bullmore, E. Network-based statistic: Identifying differences in mind networks. Neuroimage 53(4), 1197–1207 (2010).PubMed 
Article 

Google Scholar 
Crossley, N. A. et al. Cognitive relevance of the neighborhood construction of the human mind useful coactivation community. Proc. Natl. Acad. Sci. 110(28), 11583–11588 (2013).ADS 
CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM utilizing a macroscopic anatomical parcellation of the MNI MRI single-subject mind. Neuroimage 15(1), 273–289 (2002).CAS 
PubMed 
Article 

Google Scholar 
Garrison, Ok. A., Scheinost, D., Finn, E. S., Shen, X. & Constable, R. T. The (in)stability of useful mind community measures throughout thresholds. Neuroimage 118, 651–661 (2015).PubMed 
Article 

Google Scholar 
Bullmore, E. & Bassett, D. S. Brain graphs: Graphical fashions of the human mind connectome. Annu. Rev. Clin. Psychol. 7, 113–140 (2011).PubMed 
Article 

Google Scholar 
Achard, S. & Bullmore, E. Efficiency and price of economical mind useful networks. PLOS Comput. Biol. 3(2), e17 (2007).ADS 
PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
Hagler, D. J. et al. Image processing and analysis strategies for the Adolescent Brain Cognitive Development Study. Neuroimage 202, 116091 (2019).CAS 
PubMed 
Article 

Google Scholar 
Mamah, D., Barch, D. M. & Repovš, G. Resting state useful connectivity of 5 neural networks in bipolar dysfunction and schizophrenia. J. Affect. Disord. 150(2), 601–609 (2013).PubMed 
PubMed Central 
Article 

Google Scholar 
Repovš, G. & Barch, D. M. Working reminiscence associated mind community connectivity in people with schizophrenia and their siblings. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2012.00137/abstract (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Van Dijk, Ok. R. A. et al. Intrinsic useful connectivity as a instrument for human connectomics: Theory, properties, and optimization. J. Neurophysiol. 103(1), 297–321 (2010).PubMed 
Article 

Google Scholar 
Ji, J. L. et al. Mapping the human mind’s cortical-subcortical useful community group. Neuroimage 185, 35–57 (2019).PubMed 
Article 

Google Scholar 
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016).ADS 
CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Floares, A. G. et al. The smallest pattern measurement for the desired prognosis accuracy. Int. J. Oncol. Cancer Ther. 2, 13–19 (2017).
Google Scholar 
Mukherjee, S. et al. Estimating dataset measurement necessities for classifying DNA microarray information. J. Comput. Biol. 10(2), 119–142 (2003).CAS 
PubMed 
Article 

Google Scholar 
Wang, C., Deng, C. & Wang, S. Imbalance-XGBoost: Leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognit. Lett. 136, 190–197 (2020).ADS 
Article 

Google Scholar 
Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia throughout surgical procedure. Nat. Biomed. Eng. 2(10), 749–760 (2018).PubMed 
PubMed Central 
Article 

Google Scholar 
Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification 679 (John Wiley & Sons, 2012).
Google Scholar 
Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of XGBoost. Artif. Intell. Rev. 54(3), 1937–1967 (2021).Article 

Google Scholar 
Friedman, J. H. Greedy perform approximation: A gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001).MathSciWeb 
MATH 
Article 

Google Scholar 
Janssen, R. J., Mourão-Miranda, J. & Schnack, H. G. Making particular person prognoses in psychiatry utilizing neuroimaging and machine learning. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3(9), 798–808 (2018).PubMed 

Google Scholar 
Bzdok, D. & Meyer-Lindenberg, A. Machine learning for precision psychiatry: Opportunities and challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 3(3), 223–230 (2018).PubMed 

Google Scholar 
Dwyer, D. B., Falkai, P. & Koutsouleris, N. Machine learning approaches for medical psychology and psychiatry. Annu. Rev. Clin. Psychol. 14(1), 91–118 (2018).PubMed 
Article 

Google Scholar 
Iniesta, R., Stahl, D. & McGuffin, P. Machine learning, statistical learning and the future of organic analysis in psychiatry. Psychol. Med. 46(12), 2455–2465 (2016).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
Cearns, M., Hahn, T. & Baune, B. T. Recommendations and future instructions for supervised machine learning in psychiatry. Transl. Psychiatry. 9(1), 1–12 (2019).Article 
CAS 

Google Scholar 
Rutledge, R. B., Chekroud, A. M. & Huys, Q. J. Machine learning and massive information in psychiatry: towards medical purposes. Curr. Opin. Neurobiol. 55, 152–159 (2019).CAS 
PubMed 
Article 

Google Scholar 
Chandler, C., Foltz, P. W. & Elvevåg, B. Using machine learning in psychiatry: The want to determine a framework that nurtures trustworthiness. Schizophr. Bull. 46(1), 11–14 (2020).PubMed 

Google Scholar 
Ritchey, M., Libby, L. A. & Ranganath, C. Chapter 3—Cortico-hippocampal programs concerned in reminiscence and cognition: The PMAT framework. In Progress in Brain Research (eds O’Mara, S. & Tsanov, M.) 45–64 (Elsevier, 2015) (The Connected Hippocampus; vol. 219).
Google Scholar 
Doll, B. B., Shohamy, D. & Daw, N. D. Multiple reminiscence programs as substrates for a number of choice programs. Neurobiol. Learn. Mem. 117, 4–13 (2015).PubMed 
Article 

Google Scholar 
Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S. & Zilles, Ok. Receptor structure of human cingulate cortex: Evaluation of the four-region neurobiological mannequin. Hum. Brain. Mapp. 30(8), 2336–2355 (2009).PubMed 
Article 

Google Scholar 
Manza, P., Tomasi, D. & Volkow, N. D. Subcortical native useful hyperconnectivity in hashish dependence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 3(3), 285–293 (2018).PubMed 

Google Scholar 
Wu, Y. F. & Yang, B. Gray matter modifications in persistent heavy hashish customers: A voxel-level research utilizing multivariate sample analysis strategy. NeuroReport 31(17), 1236–1241 (2020).PubMed 
Article 

Google Scholar 
Cheng, H. et al. Resting state useful magnetic resonance imaging reveals distinct mind exercise in heavy hashish customers—A multi-voxel sample analysis. J. Psychopharmacol. Oxf. Engl. 28(11), 1030–1040 (2014).CAS 
Article 

Google Scholar 
Lopez-Larson, M. P. et al. Altered prefrontal and insular cortical thickness in adolescent marijuana customers. Behav. Brain Res. 220(1), 164–172 (2011).PubMed 
PubMed Central 
Article 

Google Scholar 
Pitcher, D. & Ungerleider, L. G. Evidence for a 3rd visible pathway specialised for social notion. Trends Cogn. Sci. 25(2), 100–110 (2021).PubMed 
Article 

Google Scholar 
Navarri, X. et al. How do substance use issues examine to different psychiatric situations on structural mind abnormalities? A cross-disorder meta-analytic comparability utilizing the ENIGMA consortium findings. Hum. Brain Mapp. 43(1), 399–413 (2022).PubMed 
Article 

Google Scholar 
Leszczynski, M. How does hippocampus contribute to working reminiscence processing?. Front. Hum. Neurosci. 5, 168 (2011).PubMed 
PubMed Central 
Article 

Google Scholar 
Lisdahl, Ok. M. et al. The influence of ADHD persistence, current hashish use, and age of common hashish use onset on subcortical quantity and cortical thickness in younger adults. Drug Alcohol Depend. 161, 135–146 (2016).PubMed 
PubMed Central 
Article 

Google Scholar 
Hagenmuller, F. et al. Early somatosensory processing in people in danger for growing psychoses. Front. Behav. Neurosci. 8, 308 (2014).PubMed 
PubMed Central 
Article 

Google Scholar 
Çolak, Ç., Çelik, Z. Ç., Zorlu, N., Kitiı, Ö. & Yüncü, Z. cortical thickness and subcortical volumes in adolescent artificial cannabinoid customers with or with out ADHD: A preliminary research. Arch. Neuropsychiatr. 56(3), 167–172 (2019).
Google Scholar 
Maxwell, A. M., Harrison, Ok., Rawls, E. & Zilverstand, A. Gender differences in the psychosocial determinants underlying the onset and upkeep of alcohol use dysfunction. Front. Neurosci. https://doi.org/10.3389/fnins.2022.808776/full (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Kahle, E. M., Veliz, P., McCabe, S. E. & Boyd, C. J. Functional and structural social assist, substance use and sexual orientation from a nationally consultant pattern of US adults. Addict. Abingt. Engl. 115(3), 546–558 (2020).Article 

Google Scholar 
Miles, D. R., van den Bree, M. B. M. & Pickens, R. W. Sex differences in shared genetic and environmental influences between conduct dysfunction signs and marijuana use in adolescents. Am. J. Med. Genet. 114(2), 159–168 (2002).PubMed 
Article 

Google Scholar 
Guxens, M., Nebot, M. & Ariza, C. Age and sex differences in elements related to the onset of hashish use: A cohort research. Drug Alcohol Depend. 88(2–3), 234–243 (2007).PubMed 
Article 

Google Scholar 
Rusby, J. C., Light, J. M., Crowley, R. & Westling, E. Influence of parent-youth relationship, parental monitoring, and mother or father substance use on adolescent substance use onset. J. Fam. Psychol. JFP J. Div. Fam. Psychol. Am. Psychol. Assoc. Div. 32(3), 310–320 (2018).
Google Scholar 
Farhat, T., Simons-Morton, B. & Luk, J. W. Psychosocial correlates of adolescent marijuana use: variations by standing of marijuana use. Addict. Behav. 36(4), 404–407 (2011).PubMed 
Article 

Google Scholar 

https://www.nature.com/articles/s41598-022-19804-2

Recommended For You