SAMSHA. Key Substance Use and Mental Health Indicators in the United States: Results from the 2018 National Survey on Drug Use and Health 82 (2018).Hasin, D. S. et al. Prevalence of marijuana use issues in the United States between 2001–2002 and 2012–2013. JAMA Psychiat. 72(12), 1235–1242 (2015).Article
Google Scholar
Chapman, C. et al. Evidence for sex convergence in prevalence of hashish use: A scientific overview and meta-regression. J. Stud. Alcohol Drugs. 78(3), 344–352 (2017).PubMed
PubMed Central
Article
Google Scholar
Nia, A. B., Mann, C., Kaur, H. & Ranganathan, M. Cannabis use: Neurobiological, behavioral, and sex/gender issues. Curr. Behav. Neurosci. Rep. 5(4), 271–280 (2018).PubMed
PubMed Central
Article
Google Scholar
Substance Abuse and Mental Health Services Administration. Results from the 2006 National Survey on Drug Use and Health: National Findings 282 (2007).Center for Behavioral Health Statistics and Quality. 2017 National Survey on Drug Use and Health: Detailed Tables 2871 (Substance Abuse and Mental Health Services Administration, 2017).
Google Scholar
Khan, S. S. et al. Gender differences in hashish use issues: Results from the nationwide epidemiologic survey of alcohol and associated situations. Drug Alcohol Depend. 130, 101–108 (2013).PubMed
Article
Google Scholar
Hernandez-Avila, C. A., Rounsaville, B. J. & Kranzler, H. R. Opioid-, cannabis- and alcohol-dependent ladies present extra fast development to substance abuse remedy. Drug Alcohol Depend. 74(3), 265–272 (2004).CAS
PubMed
Article
Google Scholar
Greaves, L. & Hemsing, N. Sex and gender interactions on the use and influence of leisure hashish. Int. J. Environ. Res. Public Health. 17(2), E509 (2020).PubMed
Article
CAS
Google Scholar
Spechler, P. A. et al. The initiation of hashish use in adolescence is predicted by sex-specific psychosocial and neurobiological options. Eur. J. Neurosci. 50(3), 2346–2356 (2019).PubMed
Article
Google Scholar
Becker, J. B., McClellan, M. L. & Reed, B. G. Sex differences, gender and dependancy. J. Neurosci. Res. 95(1–2), 136–147 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
Lundberg, S. M. & Lee, S. I. A unified strategy to decoding mannequin predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).
Google Scholar
Koob, G. F. & Volkow, N. D. Neurobiology of dependancy: A neurocircuitry analysis. Lancet Psychiatry 3(8), 760–773 (2016).PubMed
PubMed Central
Article
Google Scholar
Bickel, W. Ok. et al. twenty first century neurobehavioral theories of choice making in dependancy: Review and analysis. Pharmacol. Biochem. Behav. 164, 4–21 (2018).CAS
PubMed
Article
Google Scholar
Yücel, M. et al. A transdiagnostic dimensional strategy in the direction of a neuropsychological evaluation for dependancy: An worldwide Delphi consensus research. Addiction 114(6), 1095–1109 (2019).PubMed
Article
Google Scholar
Zilverstand, A. & Goldstein, R. Z. Chapter 3—Dual fashions of drug dependancy: the impaired response inhibition and salience attribution mannequin. In Cognition and Addiction (ed. Verdejo-Garcia, A.) 17–23 (Academic Press, 2020).Chapter
Google Scholar
Redish, A. D., Jensen, S. & Johnson, A. A unified framework for dependancy: Vulnerabilities in the choice course of. Behav. Brain Sci. 31(4), 415–487 (2008).PubMed
PubMed Central
Article
Google Scholar
Rawls, E., Kummerfeld, E. & Zilverstand, A. An built-in multimodal mannequin of alcohol use dysfunction generated by data-driven causal discovery analysis. Commun. Biol. 4(1), 1–12 (2021).Article
CAS
Google Scholar
Meier, M. H. et al. Which adolescents develop persistent substance dependence in maturity? Using population-representative longitudinal information to tell common threat evaluation. Psychol. Med. 46(4), 877–889 (2016).CAS
PubMed
Article
Google Scholar
Khurana, A., Romer, D., Betancourt, L. M. & Hurt, H. Working reminiscence capability and early drug use development as predictors of adolescent substance use issues. Addict. Abingt. Engl. 112(7), 1220–1228 (2017).Article
Google Scholar
Wilson, S., Malone, S. M., Venables, N. C., McGue, M. & Iacono, W. G. Multimodal indicators of threat for and penalties of substance use issues: Executive capabilities and trait disconstraint assessed from preadolescence into early maturity. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2019.12.007 (2019).Article
Google Scholar
Meier, M. H. et al. Associations between adolescent hashish use and neuropsychological decline: A longitudinal co-twin management research. Addict. Abingt. Engl. 113(2), 257–265 (2018).Article
Google Scholar
Schlossarek, S., Kempkensteffen, J., Reimer, J. & Verthein, U. Psychosocial determinants of hashish dependence: A scientific overview of the literature. Eur. Addict. Res. 22(3), 131–144 (2016).PubMed
Article
Google Scholar
Defoe, I. N., Khurana, A., Betancourt, L., Hurt, H. & Romer, D. Disentangling longitudinal relations between youth hashish use, peer hashish use, and conduct issues: Developmental cascading hyperlinks to hashish use dysfunction. Addiction 114(3), 485–493 (2019).PubMed
Article
Google Scholar
Pingault, J. B. et al. Childhood trajectories of inattention, hyperactivity and oppositional behaviors and prediction of substance abuse/dependence: A 15-year longitudinal population-based research. Mol. Psychiatry. 18(7), 806–812 (2013).PubMed
Article
Google Scholar
Oshri, A., Rogosch, F. A., Burnette, M. L. & Cicchetti, D. Developmental pathways to adolescent hashish abuse and dependence: Child maltreatment, rising character, and internalizing versus externalizing psychopathology. Psychol. Addict. Behav. 25(4), 634–644 (2011).PubMed
PubMed Central
Article
Google Scholar
Griffith-Lendering, M. F. H., Huijbregts, S. C. J., Mooijaart, A., Vollebergh, W. A. M. & Swaab, H. Cannabis use and growth of externalizing and internalizing behaviour issues in early adolescence: A TRAILS research. Drug Alcohol Depend. 116(1), 11–17 (2011).CAS
PubMed
Article
Google Scholar
Farmer, R. F. et al. Internalizing and externalizing psychopathology as predictors of hashish use dysfunction onset throughout adolescence and early maturity. Psychol. Addict. Behav. 29(3), 541 (2015).PubMed
PubMed Central
Article
Google Scholar
Proctor, L. J. et al. Child maltreatment and age of alcohol and marijuana initiation in high-risk youth. Addict. Behav. 75, 64–69 (2017).PubMed
PubMed Central
Article
Google Scholar
Mills, R., Kisely, S., Alati, R., Strathearn, L. & Najman, J. M. Child maltreatment and hashish use in younger maturity: A beginning cohort research. Addiction 112(3), 494–501 (2017).PubMed
Article
Google Scholar
Fridberg, D. J., Vollmer, J. M., O’Donnell, B. F. & Skosnik, P. D. Cannabis customers differ from non-users on measures of character and schizotypy. Psychiatry Res. 186(1), 46–52 (2011).PubMed
PubMed Central
Article
Google Scholar
Ketcherside, A., Jeon-Slaughter, H., Baine, J. L. & Filbey, F. M. Discriminability of character profiles in remoted and co-morbid marijuana and nicotine customers. Psychiatry Res. 238, 356–362 (2016).PubMed
PubMed Central
Article
Google Scholar
Terracciano, A., Löckenhoff, C. E., Crum, R. M., Bienvenu, O. J. & Costa, P. T. Five-Factor Model character profiles of drug customers. BMC Psychiatry 8(1), 22 (2008).PubMed
PubMed Central
Article
Google Scholar
Creemers, H. E. et al. Predicting onset of hashish use in early adolescence: The interrelation between high-intensity pleasure and disruptive habits. The TRAILS Study. J. Stud. Alcohol Drugs. 70(6), 850–858 (2009).PubMed
Article
Google Scholar
Amlung, M., Vedelago, L., Acker, J., Balodis, I. & MacKillop, J. Steep delay discounting and addictive habits: a meta-analysis of steady associations. Addict. Abingt. Engl. 112(1), 51–62 (2017).Article
Google Scholar
Strickland, J. C., Lee, D. C., Vandrey, R. & Johnson, M. W. A scientific overview and meta-analysis of delay discounting and hashish use. Exp. Clin. Psychopharmacol. https://doi.org/10.1037/pha0000378 (2020).Article
PubMed
PubMed Central
Google Scholar
Meier, M. H. et al. Persistent hashish customers present neuropsychological decline from childhood to midlife. Proc. Natl. Acad. Sci. 109(40), E2657–E2664 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
Gonzalez, R., Pacheco-Colón, I., Duperrouzel, J. C. & Hawes, S. W. Does hashish use trigger declines in neuropsychological functioning? A overview of longitudinal research. J. Int. Neuropsychol. Soc. JINS 23(9–10), 893–902 (2017).PubMed
Article
Google Scholar
Zilverstand, A., Huang, A. S., Alia-Klein, N. & Goldstein, R. Z. Neuroimaging impaired response inhibition and salience attribution in human drug dependancy: A scientific overview. Neuron 98(5), 886–903 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Lorenzetti, V., Chye, Y., Silva, P., Solowij, N. & Roberts, C. A. Does common hashish use have an effect on neuroanatomy? An up to date systematic overview and meta-analysis of structural neuroimaging research. Eur. Arch. Psychiatry Clin. Neurosci. 269(1), 59–71 (2019).PubMed
Article
Google Scholar
Batalla, A. et al. Structural and useful imaging research in persistent hashish customers: A scientific overview of adolescent and grownup findings. PLoS ONE 8(2), e55821 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Maggs, J. L. et al. Predicting younger grownup diploma attainment by late adolescent marijuana use. J. Adolesc. Health Off. Publ. Soc. Adolesc. Med. 57(2), 205–211 (2015).Article
Google Scholar
Danielsson, A. Ok., Falkstedt, D., Hemmingsson, T., Allebeck, P. & Agardh, E. Cannabis use amongst Swedish males in adolescence and the threat of antagonistic life course outcomes: Results from a 20 year-follow-up research. Addict. Abingt. Engl. 110(11), 1794–1802 (2015).Article
Google Scholar
Green, Ok. M., Doherty, E. E. & Ensminger, M. E. Long-term penalties of adolescent hashish use: Examining middleman processes. Am. J. Drug Alcohol Abuse. 43(5), 567–575 (2017).PubMed
Article
Google Scholar
Verweij, Ok. J. H., Huizink, A. C., Agrawal, A., Martin, N. G. & Lynskey, M. T. Is the relationship between early-onset hashish use and instructional attainment causal or on account of frequent legal responsibility?. Drug Alcohol Depend. 133(2), 580–586 (2013).PubMed
Article
Google Scholar
Wiley, J. L. & Burston, J. J. Sex differences in Δ9-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci. Lett. 576, 51–55 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
Narimatsu, S., Watanabe, Ok., Yamamoto, I. & Yoshimura, H. Sex distinction in the oxidative metabolism of delta 9-tetrahydrocannabinol in the rat. Biochem. Pharmacol. 41(8), 1187–1194 (1991).CAS
PubMed
Article
Google Scholar
Harte-Hargrove, L. C. & Dow-Edwards, D. L. Withdrawal from THC throughout adolescence: Sex differences in locomotor exercise and nervousness. Behav. Brain Res. 231(1), 48–59 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
Fattore, L., Spano, M., Altea, S., Fadda, P. & Fratta, W. Drug- and cue-induced reinstatement of cannabinoid-seeking behaviour in male and feminine rats: Influence of ovarian hormones. Br. J. Pharmacol. 160(3), 724–735 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
Fattore, L. et al. Cannabinoid self-administration in rats: Sex differences and the affect of ovarian perform. Br. J. Pharmacol. 152(5), 795–804 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
Hill, M. N. et al. Endogenous cannabinoid signaling is important for stress adaptation. Proc. Natl. Acad. Sci. U.S.A. 107(20), 9406–9411 (2010).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Hillard, C. J., Beatka, M. & Sarvaideo, J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr. Physiol. 7(1), 1–15 (2016).PubMed
PubMed Central
Google Scholar
Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system, in Proceedings of the twenty second ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 785–794 (2016) [cited 2020 Sept 8]. (KDD ’16). https://doi.org/10.1145/2939672.2939785Song, Y. Y. & Lu, Y. Decision tree strategies: Applications for classification and prediction. Shanghai Arch. Psychiatry. 27(2), 130–135 (2015).PubMed
PubMed Central
Google Scholar
Shapley, L. S. A price for N-person video games. In Contributions to the Theory of Games 2nd edn (ed. Kuhn, H. W.) 307–317 (Princeton University Press, 1953).
Google Scholar
Lundberg SM, Erion GG, Lee SI. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv (2019).Hesselbrock, M., Easton, C., Bucholz, Ok. Ok., Schuckit, M. & Hesselbrock, V. A validity research of the SSAGA-a comparability with the SCAN. Addiction 94(9), 1361–1370 (1999).CAS
PubMed
Article
Google Scholar
Barch, D. M. et al. Function in the human connectome: Task-fMRI and particular person differences in habits. Neuroimage 80, 169–189 (2013).PubMed
Article
Google Scholar
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).PubMed
Article
Google Scholar
Uğurbil, Ok. et al. Pushing spatial and temporal decision for useful and diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104 (2013).PubMed
Article
CAS
Google Scholar
Perlaki, G. et al. Are there any gender differences in the hippocampus quantity after head-size correction? A volumetric and voxel-based morphometric research. Neurosci. Lett. 570, 119–123 (2014).CAS
PubMed
Article
Google Scholar
Zalesky, A., Fornito, A. & Bullmore, E. Network-based statistic: Identifying differences in mind networks. Neuroimage 53(4), 1197–1207 (2010).PubMed
Article
Google Scholar
Crossley, N. A. et al. Cognitive relevance of the neighborhood construction of the human mind useful coactivation community. Proc. Natl. Acad. Sci. 110(28), 11583–11588 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM utilizing a macroscopic anatomical parcellation of the MNI MRI single-subject mind. Neuroimage 15(1), 273–289 (2002).CAS
PubMed
Article
Google Scholar
Garrison, Ok. A., Scheinost, D., Finn, E. S., Shen, X. & Constable, R. T. The (in)stability of useful mind community measures throughout thresholds. Neuroimage 118, 651–661 (2015).PubMed
Article
Google Scholar
Bullmore, E. & Bassett, D. S. Brain graphs: Graphical fashions of the human mind connectome. Annu. Rev. Clin. Psychol. 7, 113–140 (2011).PubMed
Article
Google Scholar
Achard, S. & Bullmore, E. Efficiency and price of economical mind useful networks. PLOS Comput. Biol. 3(2), e17 (2007).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Hagler, D. J. et al. Image processing and analysis strategies for the Adolescent Brain Cognitive Development Study. Neuroimage 202, 116091 (2019).CAS
PubMed
Article
Google Scholar
Mamah, D., Barch, D. M. & Repovš, G. Resting state useful connectivity of 5 neural networks in bipolar dysfunction and schizophrenia. J. Affect. Disord. 150(2), 601–609 (2013).PubMed
PubMed Central
Article
Google Scholar
Repovš, G. & Barch, D. M. Working reminiscence associated mind community connectivity in people with schizophrenia and their siblings. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2012.00137/abstract (2012).Article
PubMed
PubMed Central
Google Scholar
Van Dijk, Ok. R. A. et al. Intrinsic useful connectivity as a instrument for human connectomics: Theory, properties, and optimization. J. Neurophysiol. 103(1), 297–321 (2010).PubMed
Article
Google Scholar
Ji, J. L. et al. Mapping the human mind’s cortical-subcortical useful community group. Neuroimage 185, 35–57 (2019).PubMed
Article
Google Scholar
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Floares, A. G. et al. The smallest pattern measurement for the desired prognosis accuracy. Int. J. Oncol. Cancer Ther. 2, 13–19 (2017).
Google Scholar
Mukherjee, S. et al. Estimating dataset measurement necessities for classifying DNA microarray information. J. Comput. Biol. 10(2), 119–142 (2003).CAS
PubMed
Article
Google Scholar
Wang, C., Deng, C. & Wang, S. Imbalance-XGBoost: Leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognit. Lett. 136, 190–197 (2020).ADS
Article
Google Scholar
Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia throughout surgical procedure. Nat. Biomed. Eng. 2(10), 749–760 (2018).PubMed
PubMed Central
Article
Google Scholar
Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification 679 (John Wiley & Sons, 2012).
Google Scholar
Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of XGBoost. Artif. Intell. Rev. 54(3), 1937–1967 (2021).Article
Google Scholar
Friedman, J. H. Greedy perform approximation: A gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001).MathSciWeb
MATH
Article
Google Scholar
Janssen, R. J., Mourão-Miranda, J. & Schnack, H. G. Making particular person prognoses in psychiatry utilizing neuroimaging and machine learning. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3(9), 798–808 (2018).PubMed
Google Scholar
Bzdok, D. & Meyer-Lindenberg, A. Machine learning for precision psychiatry: Opportunities and challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 3(3), 223–230 (2018).PubMed
Google Scholar
Dwyer, D. B., Falkai, P. & Koutsouleris, N. Machine learning approaches for medical psychology and psychiatry. Annu. Rev. Clin. Psychol. 14(1), 91–118 (2018).PubMed
Article
Google Scholar
Iniesta, R., Stahl, D. & McGuffin, P. Machine learning, statistical learning and the future of organic analysis in psychiatry. Psychol. Med. 46(12), 2455–2465 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Cearns, M., Hahn, T. & Baune, B. T. Recommendations and future instructions for supervised machine learning in psychiatry. Transl. Psychiatry. 9(1), 1–12 (2019).Article
CAS
Google Scholar
Rutledge, R. B., Chekroud, A. M. & Huys, Q. J. Machine learning and massive information in psychiatry: towards medical purposes. Curr. Opin. Neurobiol. 55, 152–159 (2019).CAS
PubMed
Article
Google Scholar
Chandler, C., Foltz, P. W. & Elvevåg, B. Using machine learning in psychiatry: The want to determine a framework that nurtures trustworthiness. Schizophr. Bull. 46(1), 11–14 (2020).PubMed
Google Scholar
Ritchey, M., Libby, L. A. & Ranganath, C. Chapter 3—Cortico-hippocampal programs concerned in reminiscence and cognition: The PMAT framework. In Progress in Brain Research (eds O’Mara, S. & Tsanov, M.) 45–64 (Elsevier, 2015) (The Connected Hippocampus; vol. 219).
Google Scholar
Doll, B. B., Shohamy, D. & Daw, N. D. Multiple reminiscence programs as substrates for a number of choice programs. Neurobiol. Learn. Mem. 117, 4–13 (2015).PubMed
Article
Google Scholar
Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S. & Zilles, Ok. Receptor structure of human cingulate cortex: Evaluation of the four-region neurobiological mannequin. Hum. Brain. Mapp. 30(8), 2336–2355 (2009).PubMed
Article
Google Scholar
Manza, P., Tomasi, D. & Volkow, N. D. Subcortical native useful hyperconnectivity in hashish dependence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 3(3), 285–293 (2018).PubMed
Google Scholar
Wu, Y. F. & Yang, B. Gray matter modifications in persistent heavy hashish customers: A voxel-level research utilizing multivariate sample analysis strategy. NeuroReport 31(17), 1236–1241 (2020).PubMed
Article
Google Scholar
Cheng, H. et al. Resting state useful magnetic resonance imaging reveals distinct mind exercise in heavy hashish customers—A multi-voxel sample analysis. J. Psychopharmacol. Oxf. Engl. 28(11), 1030–1040 (2014).CAS
Article
Google Scholar
Lopez-Larson, M. P. et al. Altered prefrontal and insular cortical thickness in adolescent marijuana customers. Behav. Brain Res. 220(1), 164–172 (2011).PubMed
PubMed Central
Article
Google Scholar
Pitcher, D. & Ungerleider, L. G. Evidence for a 3rd visible pathway specialised for social notion. Trends Cogn. Sci. 25(2), 100–110 (2021).PubMed
Article
Google Scholar
Navarri, X. et al. How do substance use issues examine to different psychiatric situations on structural mind abnormalities? A cross-disorder meta-analytic comparability utilizing the ENIGMA consortium findings. Hum. Brain Mapp. 43(1), 399–413 (2022).PubMed
Article
Google Scholar
Leszczynski, M. How does hippocampus contribute to working reminiscence processing?. Front. Hum. Neurosci. 5, 168 (2011).PubMed
PubMed Central
Article
Google Scholar
Lisdahl, Ok. M. et al. The influence of ADHD persistence, current hashish use, and age of common hashish use onset on subcortical quantity and cortical thickness in younger adults. Drug Alcohol Depend. 161, 135–146 (2016).PubMed
PubMed Central
Article
Google Scholar
Hagenmuller, F. et al. Early somatosensory processing in people in danger for growing psychoses. Front. Behav. Neurosci. 8, 308 (2014).PubMed
PubMed Central
Article
Google Scholar
Çolak, Ç., Çelik, Z. Ç., Zorlu, N., Kitiı, Ö. & Yüncü, Z. cortical thickness and subcortical volumes in adolescent artificial cannabinoid customers with or with out ADHD: A preliminary research. Arch. Neuropsychiatr. 56(3), 167–172 (2019).
Google Scholar
Maxwell, A. M., Harrison, Ok., Rawls, E. & Zilverstand, A. Gender differences in the psychosocial determinants underlying the onset and upkeep of alcohol use dysfunction. Front. Neurosci. https://doi.org/10.3389/fnins.2022.808776/full (2022).Article
PubMed
PubMed Central
Google Scholar
Kahle, E. M., Veliz, P., McCabe, S. E. & Boyd, C. J. Functional and structural social assist, substance use and sexual orientation from a nationally consultant pattern of US adults. Addict. Abingt. Engl. 115(3), 546–558 (2020).Article
Google Scholar
Miles, D. R., van den Bree, M. B. M. & Pickens, R. W. Sex differences in shared genetic and environmental influences between conduct dysfunction signs and marijuana use in adolescents. Am. J. Med. Genet. 114(2), 159–168 (2002).PubMed
Article
Google Scholar
Guxens, M., Nebot, M. & Ariza, C. Age and sex differences in elements related to the onset of hashish use: A cohort research. Drug Alcohol Depend. 88(2–3), 234–243 (2007).PubMed
Article
Google Scholar
Rusby, J. C., Light, J. M., Crowley, R. & Westling, E. Influence of parent-youth relationship, parental monitoring, and mother or father substance use on adolescent substance use onset. J. Fam. Psychol. JFP J. Div. Fam. Psychol. Am. Psychol. Assoc. Div. 32(3), 310–320 (2018).
Google Scholar
Farhat, T., Simons-Morton, B. & Luk, J. W. Psychosocial correlates of adolescent marijuana use: variations by standing of marijuana use. Addict. Behav. 36(4), 404–407 (2011).PubMed
Article
Google Scholar
https://www.nature.com/articles/s41598-022-19804-2